


Create HTML5 Vertical Endless Runner cross platform games

Create HTML5 Vertical Endless Runner cross 
platform games

All the secrets behind the making of cross-platform HTML5 vertical endless 

runner games using Phaser framework and other free software.

Written by Emanuele Feronato

1



Create HTML5 Vertical Endless Runner cross platform games

About endless runners and the game we are 
building
"Endless runner" or "infinite runner" game genre is becoming more and more 

popular as endless runners are generally easy to play, quite challenging and can be

developed by small studios or solo indie developers.

In these kind of games the player character is continuously moving forward 

through a randomly generated endless game world.

Game controls are limited to the bare minimum, and most of times the player is 

only allowed to make only one action, such as jumping or changing direction.

The only object of these games is to get as far as possible before the character 

dies, trying to get a high score.

Endless runners have found particular success on mobile platforms since mobile 

devices are perfectly suited to the small set of controls these games require, often 

limited to a single screen tap or swipe, allowing to be played with only one hand.

The game we are about to create is heavily based on Rise Above by Norman 

Rozental (https://itunes.apple.com/au/app/rise-above/id1039989390?mt=8) which 

has been featured in the Apple app store itself.

It's a free game so you can download it, play it and have an idea about what you 

2

https://itunes.apple.com/au/app/rise-above/id1039989390?mt=8


Create HTML5 Vertical Endless Runner cross platform games

are about do develop.

Through this book you will learn how to make a complete HTML5 cross-platform

game like Rise Above, with all its original features, and even improve it and add 

room for customization.

What is a cross-platform game and why 
should I make cross-platform games?

A cross-platform game is a game which will be able to run on various devices, 

such as smartphones and tablets – but also on desktop machines – each one with 

its own resolution and screen aspect ratio, providing the player with the same 

experience on different platforms.

From a programmer point of view, a cross-platform game is a game you code only

once, and will adapt to any device no matter the resolution or aspect ratio.

I often think about cross-platform games as “one script to rule them all”, and that's

exactly what I mean, you will focus on game development and let the framework 

do the dirty job to adapt it to various devices.

There are a lot of frameworks which allow you to create cross-platform games, 

and my suggested choice is Phaser.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help developers make 

powerful, cross-browser HTML5 games really quickly using JavaScript.

JavaScript, being a familiar and intuitive language, is one of the most common 

languages so if you did not already developed JavaScript applications you will 

find a lot of tutorials around the web to get you started.

Should this be your first project, don't worry anyway: following this book you will

get every information you need to create the game and get started into game 

development.

3



Create HTML5 Vertical Endless Runner cross platform games

Together with Phaser, you are going to use other free software turning your 

computer into a game development workstation at no cost.

Choosing a text editor
In order to start making games with Phaser, you'll first need a software to write 

code. There is a lot of free offers. I personally use PSPad 

(http://www.pspad.com/) on my Windows computer and TextWrangler 

(http://www.barebones.com/products/textwrangler/) on my Mac.

Other alternatives are Brackets (http://brackets.io/) and Atom (https://atom.io/) 

but you can use your favorite text editor, I'd only suggest you to choose one 

capable of highlighting JavaScript syntax.

Choosing a web server
To test your Phaser games, and more in general to test most web applications, you 

will need to install a web server on your computer to override browsers security 

limits when running your project locally.

I am using WAMP (http://www.wampserver.com/) on my Windows machine, and 

MAMP (https://www.mamp.info/) on the Mac. Recently, MAMP also released a 

Windows version (https://www.mamp.info/en/mamp_windows.html).

If you are looking for something really simple, with no extra stuff, check Fenix 

Web Server (http://fenixwebserver.com/). All these web servers are free.

If you prefer, if you have a FTP space you can test your projects directly online by

uploading and calling them directly from the web. In this case, you won't need to 

have a web server installed on your computer, but I highly recommend using 

WAMP or MAMP instead.

Most FTP spaces requires a paid account, and you can only use them when you 

have an internet connection available.

I know at this time most of you may think “come on, it's just JavaScript, what's 

this server stuff, I quit!”.

4

http://fenixwebserver.com/
https://www.mamp.info/en/mamp_windows.html
https://www.mamp.info/
http://www.wampserver.com/
https://atom.io/
http://brackets.io/
http://www.barebones.com/products/textwrangler/
http://www.pspad.com/


Create HTML5 Vertical Endless Runner cross platform games

This is the same thing I said when I first had to install and configure a web server 

just to run a JavaScript page.

Let me explain why you should really choose a web server, rather than quit 

reading: browsers do not simply allow you to properly display web pages and 

HTML5 games. They also take care of your security. When you load a page 

locally in your browser, you won't have problems until it's just a static HTML web

page.

But when you launch more complex scripts which load and handle resources from

your hard disk such as images, audio files and every other kind of data, to prevent 

malicious scripts to access to virtually any file on your computer, browsers have a 

series of security measures which stop files to be accessed and – unfortunately – 

this causes your games not to work.

With a web server, browsers will know they are running in a small, safe 

environment where only some files – the ones you placed in a given project folder

– can be accessed, and they will give your scripts green light to work properly.

Believe me, it's necessary and way easier than you may think.

Choosing a web browser
Since your game will run on all modern browsers, you will also need a web 

browser to make your games run into and test them. I am using Google Chrome 

(http://www.google.com/chrome/) but you are free to use the one you prefer as 

long as it supports HTML5 canvas element. Having the latest version of your 

web browser installed on your computer should be enough.

Refer to your browser support page to see if it supports canvas element.

Other software you may need
Games basically are a collection of images and sounds which are moved and 

played accordingly to player actions and scripting logic, so during the creation of 

the game you will be asked to edit and create both images and sounds.

5

http://www.google.com/chrome/


Create HTML5 Vertical Endless Runner cross platform games

Audacity (http://sourceforge.net/projects/audacity/) is a great free software to 

work with sounds, while I would suggest GIMP (http://www.gimp.org/) to work 

with images, which is also free.

You can also use the trial version of Photoshop (http://www.photoshop.com/) 

which allows you to use all features for free for a limited period.

Downloading Phaser
Finally, it's time to download Phaser (http://www.phaser.io/download) and you 

are ready to go.

Phaser comes in a zipped file with a lot of docs and resources for a download file 

greater than 30 MB, anyway we will need just one file, containing the framework 

itself.

Setting up the project
The whole project is basically a web page including Phaser framework and 

another JavaScript file with our game.

There are two important things you should consider before you start coding your 

game: first, size matters. When importing third party frameworks like Phaser, 

always choose minified versions if provided.

Talking about Phaser, inside build folder in the zipped package you just 

downloaded, you will find phaser.min.js file. That's the only Phaser file we will

need during the development of our game.

Second, writing the entire code of a game in a single file is generally considered a 

malpractice. You should create one JavaScript file for the splash screen, another 

for game logic, and basically one file for each actor you will include in your 

game.

The problem is some sponsors need to have the entire game in one file. And since 

finding sponsors and selling game licenses can be a great income source, we have 

to code games with sponsors needs in mind.

6

http://www.phaser.io/download
http://www.photoshop.com/
http://www.gimp.org/
http://sourceforge.net/projects/audacity/


Create HTML5 Vertical Endless Runner cross platform games

Our entire game will be written in a file called game.js.

Create an index.html file which is the web page you will call to launch the 

game, and you'll have all you need to start coding the game.

This is how your project folder will look like:

Icons may be different according to your file preferences.

Let's start with index.html:

<!DOCTYPE html>
<html>
     <head>
          <style type="text/css">
               body{
                    background: #000000;
                    padding:0px;
                    margin:0px;
               }
          </style>
          <script src="phaser.min.js"></script>
          <script src = "game.js"></script>
     </head>
     <body>
     </body>
</html>

As you can see, it's just an empty web page with only a call to two JavaScript 

files: phaser.min.js is the file we just downloaded, and game.js will contain 

our game script. There are very few lines in game.js too, at the moment:

var game;

window.onload = function() {
game = new Phaser.Game(640, 960, Phaser.AUTO, "");

}

7



Create HTML5 Vertical Endless Runner cross platform games

We just created a game variable and once the window loads, we create the instance

of the game itself.

window.onload is fired at the end of the document loading process, in our case 

when all scripts called in index.html have finished loading. This means 

everything is ready to be executed, so we can run the function. 

game = new Phaser.Game(640, 960, Phaser.AUTO, "");

game object is the heart of your game, providing quick access to common 

functions and handling the boot process.

new Game(width, height, renderer, parent) creates a game width pixels 

wide, height pixels tall rendering it in render mode – which can be 

Phaser.AUTO, Phaser.WEBGL, Phaser.CANVAS or Phaser.HEADLESS – into 

parent DOM element.

Now let me explain why I used these values as arguments.

The common portrait resolution in smartphones is 640x960 pixels. That's why we 

are using it. Obviously there are a lot of exceptions, but since we are building a 

cross-platform game we start with 640x960 and we will only need to make some 

minor tweaks to make it work on all devices.

About the renderer, using Phaser.AUTO we let Phaser decide which renderer to 

use, and the empty string passed as DOM element will make Phaser inject the 

game directly in the body of the page.

The latest two arguments – renderer and parent – have been set to their default 

values, so you could have created the game this way:

game = new Phaser.Game(640, 960);

But it's always good to know what you are doing.

We said we will be using our web browser to test the game, so ensure you have 

8



Create HTML5 Vertical Endless Runner cross platform games

your web server up and running and let's start rocking.

Running your game
To run the game on your local server, simply point your browser to your game 

folder which in most cases will be http://localhost/yourgamefolder/ and this is 

what you should get if running it on your Google Chrome browser:

This is the default debug string Phaser prompts on the console window. You can 

generally access to your console window pressing F12 in your browser, anyway 

refer to your browser documentation.

Text output may vary a bit according to Phaser version, this book has been 

updated to Phaser 2.4.7.

Adding game states
Although managing Phaser states is an advanced feature, it's very important to 

learn how to use states from the beginning of your Phaser programming course, as

they will allow you to write better code and have a better resource management.

Let's think about the game we are making. We still do not know to code it but we 

can easily imagine the game will all have at least a title screen, a screen with the 

game itself, and a game over screen.

Each “screen” can be developed as a Phaser state, which can be executed cleaning

memory and resources before it starts, allowing us to easily switch through game 

“screens”.

Now let's write this concept in a more detailed way, listing all the states we will 

actually use in our game:

Boot state: in the boot state we will make all adjustment to the game to be resized

9

http://localhost/phasergame/


Create HTML5 Vertical Endless Runner cross platform games

accordingly to browser resolution and aspect ratio.

Preload state: we will use this state to preload all assets we will use in the game. 

It's the classic “loading” screen you see in most games.

Title Screen state: the title screen, showing your game name and a play button.

Game state: well, the game itself.

Game over state: the most hated screen, the one you won't want to see. The game

over screen also features a “play again” button to let players restart the game. 

This is the blueprint of the game, with all states defined and declared. Change 

game.js this way:

var game;

window.onload = function() {
     game = new Phaser.Game(640, 960, Phaser.AUTO, "");
     game.state.add("Boot", boot);
     game.state.add("Preload", preload); 
     game.state.add("TitleScreen", titleScreen);
     game.state.add("PlayGame", playGame);
     game.state.add("GameOverScreen", gameOverScreen);
     game.state.start("Boot");
}

var boot = function(game){};
boot.prototype = {
     create: function(){
          console.log("game started");
     }     
}

var preload = function(game){};
preload.prototype = {    
}

var titleScreen = function(game){};
titleScreen.prototype = {    
}

var playGame = function(game){};
playGame.prototype = {    
}

var gameOverScreen = function(game){};
gameOverScreen.prototype = {    
}

Inside onload method we add all game states, then call Boot state which is the 

10



Create HTML5 Vertical Endless Runner cross platform games

first state we want to be executed. Let's break the code in pieces:

game.state.add("Boot", boot);

Here is how we add a state to our game. The first parameter is the name we give 

to the state, and the second is the function called once the state is started.

state.add(key, state) adds a new state. You must give each state a unique 

name in key argument by which you'll identify it. state is usually a JavaScript 

object or a function.

In other words, we bind boot function to a state called Boot. All other states are 

added following the same concept.

game.state.start("Boot");

And finally this is how a state is started.

state.start(key) starts the state previously named with key.

At this time, Boot state is started, calling boot function which will consequently 

call boot.create function.

What's inside boot function?

var boot = function(game){};
boot.prototype = {
     create: function(){
          console.log("game started");
     }     
}

We called boot a “function” for the sake of simplicity, but actually it's an object 

with a prototype.

Every JavaScript object has a prototype. The prototype itself is also an object, 

and all JavaScript objects inherit their properties and methods from their 

prototype.

11



Create HTML5 Vertical Endless Runner cross platform games

Phaser will recognize if inside a state object there is a method called create and 

will execute it once the state has been launched. So everything inside create 

function will be executed when Boot state is called.

A function inside an object is called method. For the same reason, when we 

refer to an object method, we mean a function declared inside the object itself.

Run the game and you will see a debug message in the console.

This is the string we wrote in create method of boot object called when we 

launched Boot state.

It's easier than you may think: you launch a state, and create method inside the 

state object is executed.

Now it's just a matter of coding all the states, one by one. Which actually is the 

content of the whole book.

Creation of the boot state
The boot state – as the name suggests – boots the game, and mainly scales the 

game adapting it to various resolutions. We need to make some changes to both 

boot and preload states, here is boot state:

var boot = function(game){};
boot.prototype = {
     preload: function(){
          this.game.load.image("loading","assets/sprites/loading.png"); 
     },
     create: function(){
          game.scale.pageAlignHorizontally = true;
          game.scale.pageAlignVertically = true;
          game.scale.scaleMode = Phaser.ScaleManager.SHOW_ALL;
          this.game.state.start("Preload");
     }      
}

12



Create HTML5 Vertical Endless Runner cross platform games

And this is the preload state:

var preload = function(game){};
preload.prototype = {   
     create: function(){
          console.log("going to preload");
     } 
}

The first thing you should notice is the preload method inside boot object.

Earlier we said create method is executed when the state launches, but before 

doing it Phaser also checks for a preload method. If preload method is found, it 

will be executed before the state loads, most of times loading graphic and sound 

assets, finally launching create method after all assets specified in preload 

method have been actually loaded.

Long concept made short: first Phaser executes preload method, then executes 

create method. Let's see the content of preload method in boot object:

this.game.load.image("loading","assets/sprites/loading.png"); 

This is how we say Phaser to load an image to be used later in the game.

load.image(key, path) loads an image stored into path and assigns it key 

name.

I would like you to have a look at the path where I stored the image. I created an 

assets folder with a sprites folder inside.

That's where I saved the image. It's not mandatory to create folders and sub 

folders for your assets, but it's recommended to keep your files organized.

Also, this is the way I will use throughout the book.

Now, what's that loading.png file?

It's just a 320x20 white rectangle saved as a PNG image which will be used as a 

loading bar.

13



Create HTML5 Vertical Endless Runner cross platform games

Always save images as PNG as this format has the advantages of being lossless 

(it does not lose quality when saved) and support alpha channel (transparency). 

Now there are a few of new lines in create method to talk about:

game.scale.pageAlignHorizontally = true;

Setting pageAlignHorizontally to true will horizontally align the game in the 

Parent container or window.

game.scale.pageAlignVertically = true;

Same thing, for vertical alignment

game.scale.scaleMode = Phaser.ScaleManager.SHOW_ALL;

scaleMode sets the scaling method which in this case with SHOW_ALL we show the

game at the largest scale possible while keeping the original aspect ratio.

this.game.state.start("Preload");

Now, Preload state is launched.

Run the game and you will see the Preload debug message in the console. 

Now the game is booted and we are ready preload assets.

Creation of the preload state
The preload state is very important because it allows to preload images and other 

assets which will be available later in the game.

14



Create HTML5 Vertical Endless Runner cross platform games

Also, we will make use of the loading bar image preloaded earlier in boot state.

preload object works like any other state object: Phaser first looks for a preload 

method then once everything has been loaded executes create method.

var preload = function(game){};
preload.prototype = {
     preload: function(){ 
          var loadingBar = this.add.sprite(game.width / 2, game.height / 2, 

"loading");
          loadingBar.anchor.setTo(0.5);
          game.load.setPreloadSprite(loadingBar);
          game.load.image("title", "assets/sprites/title.png");
          game.load.image("playbutton", "assets/sprites/playbutton.png");
     },
     create: function(){
          this.game.state.start("TitleScreen");
     }
}

var titleScreen = function(game){};
titleScreen.prototype = {  
     create: function(){  
          console.log("title screen here");
     }
}

As you can see, I loaded two more images: the game title and the play button, 

look at them:

15



Create HTML5 Vertical Endless Runner cross platform games

I placed them on a green background so you can see them, but both images have 

transparent background.

Now I am showing you two lines which add a sprite on the canvas, but they will 

be explained in detail in a few minutes:

var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
loadingBar.anchor.setTo(0.5);

The reason why I am not explaining these lines now – take them as “add 

loadingBar image” – is because now it's time to show you an important feature 

you will only find in this state, while you will have a lot of time to learn how to 

add stuff on the screen.

This is the core of preload method:

game.load.setPreloadSprite(loadingBar);

With setPreloadSprite method we can turn an image into a progressive loading

bar which grows as assets are being loaded. Believe me, it would take quite some 

time to add this feature coding it from scratch.

load.setPreloadSprite(sprite) sets sprite to be a preload sprite which 

has its width or height crop adjusted based on the percentage of the loader in 

real-time. This allows you to easily make loading bars for games.

Run the game, and you should see this debug message:

That's because you preloaded all graphic assets then switched to TitleScreen 

state.

Probably you did not see the loading bar growing as image were loading. That's 

16



Create HTML5 Vertical Endless Runner cross platform games

because at the moment the game loads just a couple of small images and you 

probably are testing the game on localhost.

Try to upload the game on some FTP space and launch it with a slow connection, 

and you will see the loading bar. Anyway, as we go completing the game adding 

more and more stuff, we will need to preload more and more files and sooner or 

later you will be able to see the loading bar in action.

We loaded some images, it's time to do something with them.

Creation of title screen
We want the title screen to have game title displayed – obviously – and a “play” 

button. Also, to give the game a more modern feeling, the background color 

should change at each play.

While just choosing a random color would be easy, you understand not all colors 

are suitable as background colors. We want to have only a small selection of 

background colors and randomly choose among them.

To choose nice background colors, if you don't have ideas you can inspire yourself

by googling something like “color schemes”, you'll get a lot of ideas, satisfaction 

guaranteed.

All background colors selected will be stored into bgColors array which will be 

declared as a global variable. Declaring all customizable variables as global 

variables is a good practice from a game developer point of view because it will 

allow sponsors to easily edit the most important parameters if they need to tune 

the gameplay.

So, here is bgColors array with its 10 colors to be randomly chosen:

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 
0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];

Now we have to choose one color, then place the title and the play button we 

17



Create HTML5 Vertical Endless Runner cross platform games

preloaded before.

Change titleScreen object this way:

var titleScreen = function(game){};
titleScreen.prototype = {  
     create: function(){  
          game.stage.backgroundColor = bgColors[game.rnd.between(0, 

bgColors.length - 1)];
          var title = game.add.image(game.width / 2, 210, "title");
          title.anchor.set(0.5);
          var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
          playButton.anchor.set(0.5);
     },
     startGame: function(){
          game.state.start("PlayGame");     
     }
}

var playGame = function(game){};
playGame.prototype = {  
     create: function(){
          console.log("play the game");
     }  
}

You'll also need to add create method to playGame object to prompt some debug 

text on the console and check everything is working.

Before we test the game, there's a lot to say about create method of 

titleScreen, let's break new changes line by line:

game.stage.backgroundColor = bgColors[game.rnd.between(0, bgColors.length - 1)];

First we change the background color of the stage to a random color chosen in 

bgColors array.

backgroundColor property of stage gets and sets the background color of the 

stage. The color can be given as a number: 0xff0000 or a hex string: 

'#ff0000'.

I told you would have seen how to add sprites, images and various stuff in a 

matter of minutes.

18



Create HTML5 Vertical Endless Runner cross platform games

Now we are going to add the image representing the title of the game, and in a 

very similar way we will add the play button too.

var title = game.add.image(game.width / 2, 210, "title");

This is how we add an image to the stage. We add the title image and store it in a 

variable called title.

add.image(x, y, key) places key image on the stage at coordinates x, y.

Title has been placed at the half of the game width and 210 pixels from the top.

game.width and game.height return respectively the width and the height of 

the game, in pixels.

When you add an image or a sprite to the stage, its registration point is always set 

on the top left pixel. Registration point can be easily changed, anyway.

title.anchor.set(0.5);

Now the registration point is set in the horizontal and vertical center of the image.

The anchor or registration point sets the origin point of the texture. The 

default is 0,0 this means the texture's origin is the top left. Setting than anchor 

to 0.5,0.5 means the textures origin is centered. Setting the anchor to 1,1 

would mean the textures origin points will be the bottom right corner. Two equal

values can be written only once. anchor.set(0.5,0.5) can be written as 

anchor.set(0.5).

Once game title has been placed, you will see every other asset you will add to the

stage will be placed in a very similar way, just like the play button we are about to

add, which only has one more argument:

var playButton = game.add.button(game.width / 2, game.height – 150, "playbutton", 
this.startGame);

playButton.anchor.set(0.5);

19



Create HTML5 Vertical Endless Runner cross platform games

In this case, it's easy to see the play button will use playbutton key and will be 

placed in the horizontal center of the game and 150 pixels above the bottom of the

canvas.

It will also have its registration point in the center.

The only difference, being a button, is it will fire startGame method once clicked.

add.button(x, y, key, callback, callbackContext) adds a button at 

coordinates (x,y) using the image stored with key value. callback is the 

function to call when the button is pressed. callbackContext is the context in 

which the callback will be called, it's usually this because it's a reference to the 

object that owns the currently executing code.

What about startGame? It's just a titleScreen method which calls PlayGame 

state. Here it is:

startGame: function(){
     game.state.start("PlayGame");     
}

Run the game some times and you will see your game title screen with different 

background colors chosen among bgColors array.

20



Create HTML5 Vertical Endless Runner cross platform games

Click or tap on the button, and you will be redirected on a black screen – actually 

PlayGame state – seeing a debug message on your console.

This has been a very important step as you learned how to place stuff on the stage.

You can place anything you want with just a line or two.

Making play button more dynamic
While the button works well, it's just a static circle with a triangle inside. No 

matter how cute look your buttons, they are just flat images if you don't animate 

them a bit.

That's why you are going to learn to create animations with Phaser tweens.

Tween is a Phaser key feature. You will use a lot of tweens in the making of this 

game and more in general in the making of every game which requires 

animations.

Let's add a tween in create method after the button is placed on the stage:

create: function(){  
     game.stage.backgroundColor = bgColors[game.rnd.between(0, bgColors.length - 

1)];
     var title = game.add.image(game.width / 2, 210, "title");
     title.anchor.set(0.5);
     var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
     playButton.anchor.set(0.5);
     var tween = game.add.tween(playButton).to({
          width: 220,
          height:220
     }, 1500, "Linear", true, 0, -1); 
     tween.yoyo(true);
}

Everything is made to make play button grow a bit until its width and height reach

220 pixels.

21



Create HTML5 Vertical Endless Runner cross platform games

add.tween(target) alters one or more properties of a target object over a 

defined period of time.

Most of tween options are stored in to method.

to(properties, duration, ease, autoStart, delay, repeat) tweens to 

properties object in duration milliseconds using ease easing. If autoStart 

is set to true, the tween starts as soon as it's been created. If delay is set, 

represents the delay in milliseconds before the tween starts, and repeat is the 

amount of times the tween should restart. If you want it to run forever, restart 

must be set to -1. 

So let's translate the tween method we have just written in plain English.

Change button width and height to 220 pixels with a Linear animation which lasts 

1500 milliseconds. Start now with no delay and repeat the animation forever.

To give the tween a yoyo effect rather than restarting the animation we use yoyo 

method.

yoyo(flag) method if flag is set to true will make tween run through from its

starting values to its end values and then play back in reverse from end to start. 

Used in combination with repeat allows you to create endless loops.

Run the game and see how play button now pulses.

With just a couple of new lines we gave life to a flat button.

22



Create HTML5 Vertical Endless Runner cross platform games

Making background more interesting
You probably liked the idea of having the background with random colors, but it 

would be better if it could have some kind of pattern. I don't see plain 

backgrounds with only one color since 1990.

At this time you have two ways to have a pattern with a random color: you can 

draw and import a series of patterns each with its own color then randomly choose

among them, or you can create one single pattern with only shades of gray then 

apply a tint with a random color.

Needless to say the second option is way better so we are going to draw a new 

image with only shades of gray. Here it is:

It's a 640x32 pixel image with some white stripes and some light gray stripes.

Let's preload it in preload method:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
}

Now the question is: why are we using a 32 pixels tall image when we have to 

cover a 960 pixels tall area?

23



Create HTML5 Vertical Endless Runner cross platform games

Answer: because we will use tile sprites.

A tile sprite is a sprite that has a repeating texture. The texture can be scrolled 

and scaled independently of the tile sprite itself. Textures will automatically 

wrap and are designed so that you can create game backdrops using seamless 

textures as a source.

You can think about them just like Photoshop patterns or CSS repeating 

backgrounds. Anyway, let's add these two lines to create method:

create: function(){  
     var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
     titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
     var title = game.add.image(game.width / 2, 210, "title");
     title.anchor.set(0.5);
     var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
     playButton.anchor.set(0.5);
     var tween = game.add.tween(playButton).to({
          width: 220,
          height:220
     }, 1500, "Linear", true, 0, -1); 
     tween.yoyo(true);
}

The first line places a tile sprite which covers the entire canvas.

add.TileSprite(x, y, width, height, key) adds a tile sprite with the top 

left corner at x, y whose dimensions are width pixels wide, height pixels tall 

using the image with key name.

The second line applies a tint to tileBG which is the tile sprite we just added.

tint property of a sprite is the tint applied to the sprite. This is a hex value. A 

value of 0xFFFFFF will remove any tint effect.

Also, I think you already got the concept of “property”.

A JavaScript property is a value associated with a JavaScript object. Properties 

can usually be changed, added, and deleted, but some are read only.

Run the game various times to see how we get a beautiful background of random 

colors.

24



Create HTML5 Vertical Endless Runner cross platform games

Now the title screen looks better, and we can concentrate on the game itself.

The entire game will have random colored assets we will create only with tint 

property starting from images in shades of gray.

Creation of game background
The game is played inside a tunnel, and one nice thing we can do to allow as 

much customization as possible is to create a global variable called tunnelWidth 

which contains the width of the tunnel in pixels.

This way tunnel width can easily be adjusted and the code will look clearer.

Remember: the most customizable options and features you include in a game, the

better first impression it will make.

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;

With the texture patterns I created for this game, the most good looking results are

achieved when tunnelWidth is a multiple of 64.

The tunnel has a foreground and a background image, let's see them:

25



Create HTML5 Vertical Endless Runner cross platform games

Tunnel background is a 640x32 pixels dark gray image, while tunnel wall is a 

320x32 image with white and light gray stripes.

As you probably imagine this choice will lead to a tint effect applied to both 

background and foreground to give the tunnel random colors.

Save the images in sprites folder and preload them in preload method of 

preload object:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
     game.load.image("tunnelbg", "assets/sprites/tunnelbg.png");
     game.load.image("wall", "assets/sprites/wall.png");
}

See it? The number of preloaded assets is growing, so probably at this time you 

will be able to see the loading bar.

We loaded two new images.

Now we can place them as tiled sprites to create the tunnel in create method of 

playGame object:

26



Create HTML5 Vertical Endless Runner cross platform games

var playGame = function(game){};
playGame.prototype = {  
     create: function(){
          var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)]
          var tunnelBG = game.add.tileSprite(0, 0, game.width, game.height, 

"tunnelbg");
          tunnelBG.tint = tintColor;
          var leftWallBG = game.add.tileSprite(- tunnelWidth / 2, 0, game.width / 

2, game.height, "wall");
          leftWallBG.tint = tintColor;
          var rightWallBG = game.add.tileSprite((game.width + tunnelWidth) / 2, 0,

game.width / 2, game.height, "wall");
          rightWallBG.tint = tintColor;
          rightWallBG.tileScale.x = -1;
     }  
}

Let's see what we did breaking the new code in detail:

var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)]

First we draw a random tint color.

var tunnelBG = game.add.tileSprite(0, 0, game.width, game.height, "tunnelbg");
tunnelBG.tint = tintColor;

tunnelBG is the tunnel background, we add it to the game as a tile sprite and make

it cover the entire canvas, then tint it with tint color.

var leftWallBG = game.add.tileSprite(- tunnelWidth / 2, 0, game.width / 2, 
game.height, "wall");

leftWallBG.tint = tintColor;

leftWallBG represent the left wall of the tunnel and it's added as a tile sprite just 

like the background, but we determine its position according to game width and 

tunnel width. Don't forget to tint it with tint color.

var rightWallBG = game.add.tileSprite((game.width + tunnelWidth) / 2, 0, 
game.width / 2, game.height, "wall");

rightWallBG.tint = tintColor;

And the same concept applies to right wall, a tile sprite with tint which position is 

27



Create HTML5 Vertical Endless Runner cross platform games

determined by game width and tunnel width.

rightWallBG.tileScale.x = -1;

To make things look properly, right wall should be specular to left wall. We can 

create two wall images – one for the left wall and one for the right wall – or flip 

horizontally the texture.

tileScale.x and tileScale.y properties respectively set the scaling of the 

image that is being tiled respectively along x or y axis. Setting properties to -1 

will make the image to be flipped respectively horizontally or vertically.

Test the game with various tunnelWidth values and see how walls and textures 

are properly placed.

You can create your game with any tunnel width, but during the book I will be 

using 256 pixels as it's the width I think looks better.

Placing the spaceship
And now, ladies and gentlemen, in the red corner… I am trying to create some 

hype around the creation of the main actor, the protagonist of this game, the 

awesome spaceship!

28



Create HTML5 Vertical Endless Runner cross platform games

Just kidding. The spaceship is just another sprite and adding it to the game will be 

a piece of cake. This is the image of the spaceship I used, and you should be bored

to read I placed it into assets/sprites folder.

I zoomed it in a bit and placed on a green background to make you see how I 

created it, but it's just some kind of strange white triangle on a transparent 

background.

Just like all images, let's add it to the preload queue in preload method of 

preload object:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
     game.load.image("tunnelbg", "assets/sprites/tunnelbg.png");
     game.load.image("wall", "assets/sprites/wall.png");
     game.load.image("ship", "assets/sprites/ship.png");
}

The spaceship will be added in create method of playGame object, but this time 

it won't just a matter of adding a sprite. Have a look at the new lines:

29



Create HTML5 Vertical Endless Runner cross platform games

create: function(){
     var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)]
     var tunnelBG = game.add.tileSprite(0, 0, game.width, game.height, 

"tunnelbg");
     tunnelBG.tint = tintColor;
     var leftWallBG = game.add.tileSprite(- tunnelWidth / 2, 0, game.width / 2, g

ame.height, "wall");
     leftWallBG.tint = tintColor;
     var rightWallBG = game.add.tileSprite((game.width + tunnelWidth) / 2, 0, 

game.width / 2, game.height, "wall");
     rightWallBG.tint = tintColor;
     rightWallBG.tileScale.x = -1;
     this.shipPositions = [(game.width - tunnelWidth) / 2 + 32, (game.width + 

tunnelWidth) / 2 – 32];
     this.ship = game.add.sprite(this.shipPositions[0], 860, "ship");
     this.ship.side = 0;
     this.ship.anchor.set(0.5);
     this.game.physics.enable(this.ship, Phaser.Physics.ARCADE);
}

First, there's an array called shipPositions which contains the horizontal 

positions of the spaceship when it's on the left – index 0 – and on the right – index

1 – side of the tunnel. These positions are determined according to game width 

and tunnel width.

Then with this line:

this.ship = game.add.sprite(this.shipPositions[0], 860, "ship");

The spaceship is added to the game. We start with the spaceship on the left side of 

the game so it's placed at shipPositions[0] horizontal coordinate and 860 

vertical coordinate, close to the bottom of the game.

this.ship.side = 0;

We also need to create a custom spaceship side property to quickly know which 

side it's traveling on. We start from zero as initially is placed on the left side.

this.ship.anchor.set(0.5);

We also want the spaceship to have the registration point on the horizontal and 

30



Create HTML5 Vertical Endless Runner cross platform games

vertical center.

this.game.physics.enable(this.ship, Phaser.Physics.ARCADE);

And this is how the spaceship is enabled to be part of the physics world.

physics.enable(object, system) creates a default physics body on object 

using system physics system.

That's all at the moment with the spaceship, test your game and see it on the 

bottom of the tunnel, in the left side.

Now we have to make the player able to move the spaceship.

You may wonder that is that ARCADE physics.

Phaser.Physics.Arcade is a light weight AABB based collision system with 

basic separation.

While listing the pro and cons of all physics engines Phaser can handle is not in 

the scope of this book, concentrate on the “light weight” keyword because it's 

what we need.

Since physics systems can be very CPU expensive, always choose the one with 

the very minimum options you really and actually require.

31



Create HTML5 Vertical Endless Runner cross platform games

Moving the spaceship horizontally
Moving the spaceship not only is very important to allow player interaction, but it 

will also introduce a Phaser key feature: player input.

Before diving into source code, we have to add two new global variables which 

will help us to fine tune the game.

The first variable is shipHorizontalSpeed which is the amount of milliseconds 

needed by the spaceship to move from a side of the tunnel to another.

The second variable is shipMoveDelay and is the delay in milliseconds we have 

to wait once the spaceship changed side of the tunnel before the player can be able

to change side again.

Remember: always try to make the game as much customizable as possible in the 

easiest way possible.

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;

In this case, the spaceship will move to the other side of the tunnel in 100 

milliseconds and won't need to wait before the player can move it again.

You can play with these values and the game play will change accordingly.

Let's see how to create the movement.

First, we need a custom property to be added to the ship, to determine whether it 

can move or not, because there are some situations in which the spaceship won't 

be able to move: when it's already moving for example.

So you will already understand the first new line of playGame object as it's adding

a canMove property and setting it to true.

You will also need to create a new method to be called each time you need to 

move the spaceship, have a look at the code:

32



Create HTML5 Vertical Endless Runner cross platform games

create: function(){
     var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)]
     var tunnelBG = game.add.tileSprite(0, 0, game.width, game.height, 

"tunnelbg");
     tunnelBG.tint = tintColor;
     var leftWallBG = game.add.tileSprite(- tunnelWidth / 2, 0, game.width / 2, 

game.height, "wall");
     leftWallBG.tint = tintColor;
     var rightWallBG = game.add.tileSprite((game.width + tunnelWidth) / 2, 0, 

game.width / 2, game.height, "wall");
     rightWallBG.tint = tintColor;
     rightWallBG.tileScale.x = -1;
     this.shipPositions = [(game.width - tunnelWidth) / 2 + 32, (game.width + 

tunnelWidth) / 2 - 32];
     this.ship = game.add.sprite(this.shipPositions[0], 860, "ship");
     this.ship.side = 0;
     this.ship.canMove = true;
     this.ship.anchor.set(0.5);
     game.physics.enable(this.ship, Phaser.Physics.ARCADE);
     game.input.onDown.add(this.moveShip, this);
},
moveShip: function(){
     if(this.ship.canMove){
          this.ship.canMove = false;
          this.ship.side = 1 - this.ship.side;
          var horizontalTween = game.add.tween(this.ship).to({ 
               x: this.shipPositions[this.ship.side]
          }, shipHorizontalSpeed, Phaser.Easing.Linear.None, true);
          horizontalTween.onComplete.add(function(){
               game.time.events.add(shipMoveDelay, function(){
                    this.ship.canMove = true;
               }, this);
          }, this);
     }
}

Let's see the other new lines:

game.input.onDown.add(this.moveShip, this);

This is a very important line because it's where we detect a player tap or click.

input.onDown.add(callback, callbackContext) is dispatched each time a 

pointer is pressed down, no matter if a tap or a click. callback function will be 

called in callbackContext context.

So when Phaser detects a click or a tap, moveShip method will be called in this 

context. 

Basically the context is the status of a script in a given moment.

33



Create HTML5 Vertical Endless Runner cross platform games

In JavaScript, this always refers to the owner of the function we're executing, 

or rather, to the object that a function is a method of.

The new lines in create method have been explained, time to see moveShip 

method:

moveShip: function(){
     if(this.ship.canMove){
          this.ship.canMove = false;
          this.ship.side = 1 - this.ship.side;
          var horizontalTween = game.add.tween(this.ship).to({ 
               x: this.shipPositions[this.ship.side]
          }, shipHorizontalSpeed, Phaser.Easing.Linear.None, true);
          horizontalTween.onComplete.add(function(){
               game.time.events.add(shipMoveDelay, function(){
                    this.ship.canMove = true;
               }, this);
          }, this);
     }
}

This is where the spaceship is moved and where there will be a pause from one 

move and another if shipMoveDelay is greater than zero.

Let's examine the script:

if(this.ship.canMove){
     // rest of the script
}

As said, the move routine is executed only if canMove property is true.

this.ship.canMove = false;

Now we are about to move the spaceship, so any further input to move the 

spaceship will be blocked until we completed the animation and waited for 

shipMoveDelay.

this.ship.side = 1 - this.ship.side;

This is how we switch spaceship side property from 0 to 1 and from 1 to 0.

34



Create HTML5 Vertical Endless Runner cross platform games

Now we can call the tween:

var horizontalTween = game.add.tween(this.ship).to({ 
     x: this.shipPositions[this.ship.side]
}, shipHorizontalSpeed, Phaser.Easing.Linear.None, true);

Everything is made to move the spaceship along x axis until it reaches the 

coordinate stored into shipPositions array at index ship.side.

You have already seen how tweens work and how useful they are. This is just 

another demonstration of their versatility.

With just a line we are able to move the spaceship from one side of the tunnel to 

another.

Run the game and click, tap, enjoy your spaceship as it flies from side to side.

There are still a couple of things to explain: what happens horizontalTween is 

complete? We wait for shipMoveDelay milliseconds then we set back canMove 

property to true and the spaceship is ready to move again.

time.events.add(delay, callback, callbackContext) fires callback 

function in callbackContext context after the given amount of delay in 

milliseconds has passed.

onComplete is in charge of letting us know when the tween is completed.

The onComplete event is fired when the tween completes. You can call its 

add(callback, callbackContext) method to run callback function in 

callbackContext context.

35



Create HTML5 Vertical Endless Runner cross platform games

Let's see how to complete spaceship horizontal movement adding a new tween.

Adding the ghost effect
To give the spaceship a more intense feeling of speed, we will add a ghost 

spaceship once the player switches its position.

We will place a half-transparent copy of the spaceship in the same position the 

spaceship was before the player changed its side, and make it fade away then 

disappear.

We will be using only tween so there's nothing new, I am just showing you what 

you can do with the knowledge you already have.

In moveShip method, we add a copy of the spaceship called ghostShip in the 

same position and set its alpha to 0.5 – half transparent.

Then we create a tween to change the alpha to zero and once completed we 

destroy ghostShip. 

moveShip: function(){
     if(this.ship.canMove){
          this.ship.canMove = false;
          this.ship.side = 1 - this.ship.side;
          var horizontalTween = game.add.tween(this.ship).to({ 
          x: this.shipPositions[this.ship.side]
          }, shipHorizontalSpeed, Phaser.Easing.Linear.None, true);
          horizontalTween.onComplete.add(function(){
               game.time.events.add(shipMoveDelay, function(){
                    this.ship.canMove = true;
               }, this);
          }, this);
          var ghostShip = game.add.sprite(this.ship.x, this.ship.y, "ship");
          ghostShip.alpha = 0.5;
          ghostShip.anchor.set(0.5);
          var ghostTween = game.add.tween(ghostShip).to({
               alpha: 0
          }, 350, Phaser.Easing.Linear.None, true);
          ghostTween.onComplete.add(function(){
               ghostShip.destroy();
          });
     }          
}

Run the game, move the spaceship from one side to another and see the ghost ship

give an extra feeling of high speed.

36



Create HTML5 Vertical Endless Runner cross platform games

You already learned how to add sprites and images to the stage, now you learned 

how to remove them once you don't need them anymore: with destroy method.

destroy method permanently destroys the sprite, its animation handlers if 

present and nulls its reference to game, freeing it up for garbage collection.

To furthermore increase the feeling of high speed, we will add another effect.

Adding smoke trail with particles
We are about to introduce a new feature which I am sure you will find extremely 

useful to add special effect to your games: particles.

Thanks to Phaser particle system we can use a large number of very small sprites 

to simulate certain kinds of chaotic phenomena – such as fire, explosions, smoke, 

waterfalls and so on – which would be otherwise very hard to reproduce with 

conventional programming techniques. We will create a smoke trail with particles.

Talking about very small sprites, a new asset is needed, a 4x4 pixels white square 

which will represent a smoke particle. Here is how we load it in preload method:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
     game.load.image("tunnelbg", "assets/sprites/tunnelbg.png");
     game.load.image("wall", "assets/sprites/wall.png");
     game.load.image("ship", "assets/sprites/ship.png");
     game.load.image("smoke", "assets/sprites/smoke.png");
}

Then the idea is to create a particle emitter which will simulate the smoke and 

37



Create HTML5 Vertical Endless Runner cross platform games

placing it close to the rear of the spaceship.

An emitter is a lightweight particle emitter that uses ARCADE Physics. It can 

be used for one-time explosions or for continuous effects like rain and fire. All it

really does is launch Particle objects out at set intervals, and fixes their positions

and velocities accordingly.

Since we are making a game which has to run smoothly on various platforms, 

some of them not that powerful, we will also need to be careful when placing a lot

of stuff on the screen. That's why we will try to get to a compromise between the 

number of particles used and the realism of the effect.

We need to add some lines to create method in playGame object:

var playGame = function(game){};
playGame.prototype = {  
     create: function(){
          // same as before
          this.smokeEmitter = game.add.emitter(this.ship.x, this.ship.y + 10, 20);
          this.smokeEmitter.makeParticles("smoke");
          this.smokeEmitter.setXSpeed(-15, 15);
          this.smokeEmitter.setYSpeed(50, 150);
          this.smokeEmitter.setAlpha(0.5, 1);
          this.smokeEmitter.start(false, 1000, 40);
     },
     moveShip: function(){
          // same as before   
     },
     update: function(){
          this.smokeEmitter.x = this.ship.x;
          this.smokeEmitter.y = this.ship.y;
     }   
}

This is a completely new concept so let's explain it line by line:

this.smokeEmitter = game.add.emitter(this.ship.x, this.ship.y + 10, 20);

Adding a particle emitter, in this case called smokeEmitter, is not that different 

than adding a sprite.

add.emitter(x, y, max) places a particle emitter in position x, y capable of 

emitting up to max particles at the same time.

38



Create HTML5 Vertical Endless Runner cross platform games

Now that the emitter has been placed just above the spaceship, let's assign it the 

image which will be used as particle:

this.smokeEmitter.makeParticles("smoke");

We are using the smoke image we just preloaded.

makeParticles(key) generates a new set of particles using key image name.

Each particle now should have a horizontal and vertical speed.

Being a smoke trail of a spaceship in a vertical endless runner, vertical speed will 

be way higher than horizontal speed.

this.smokeEmitter.setXSpeed(-15, 15);
this.smokeEmitter.setYSpeed(50, 150);

This should grant a good smoke effect.

setXspeed(min, max) and setYspeed(min, max) respectively set the 

horizontal and vertical speed of each particle as a random value from min to max

pixels by second.

In the same way we can play with particle transparency:

this.smokeEmitter.setAlpha(0.5, 1);

Changing the transparency adds realism to smoke effect.

setAlpha(min, max) sets the alpha of each particle to a random value from 

min to max. Remember 0 is completely transparent and 1 is completely opaque.

Finally we are ready to make the emitter start:

this.smokeEmitter.start(false, 1000, 40);

And the particles will be generated

39



Create HTML5 Vertical Endless Runner cross platform games

start(explode, lifespan, frequency) starts emitting particles. explode is 

a Boolean value which says hether the particles should all burst out at once 

(true) or at the frequency given (false). Particle will last for lifespan 

milliseconds and will be emitted every frequency milliseconds, if explode is 

set to false.

We also have to create update method to playGame object.

Phaser will recognize if in a state there's a method called update will execute it at 

each frame.

This will make particles follow the spaceship:

update: function(){
     this.smokeEmitter.x = this.ship.x;
     this.smokeEmitter.y = this.ship.y;
}   

Now test the game and see your particle trail following your spaceship

It will always follow the spaceship because at each frame its position will be 

adjusted by update method.

Making the spaceship rise
We have to slowly move the spaceship to the top of the screen. It will be very easy

as it's just another tween.

First, a new global variable which stores the amount of milliseconds needed to 

reach the top of the screen.

We'll call the variable shipVerticalSpeed and we want it to be customizable.

40



Create HTML5 Vertical Endless Runner cross platform games

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;
var shipVerticalSpeed = 15000; 

The spaceship will reach the top of the screen in 15 seconds.

Now we need a tween which will last shipVerticalSpeed milliseconds and move 

the spaceship to the top of the game area, which is at y coordinate equal to zero.

I am sure you already know how to do it:

In create method of playGame function, simply add this new tween:

create: function(){
     // same as before
     this.verticalTween = game.add.tween(this.ship).to({
          y: 0
     }, shipVerticalSpeed, Phaser.Easing.Linear.None, true); 
}

I told it was easy once you get used to tweens.

Run the game, and watch your spaceship slowing moving up.

Obviously while the spaceship is moving up you are also able to move them left 

41



Create HTML5 Vertical Endless Runner cross platform games

and right, because tweens work independently.

Using swipe to move back the ship
The spaceship is able to rise, but we have to find a way to move it back down.

We are using a swipe to do it, and since Phaser does not feature a native swipe 

detection we are going to build it on our own.

First, we need a global variable to store how many pixels the player has to move 

the finger before we consider it a swipe.

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;
var shipVerticalSpeed = 15000; 
var swipeDistance = 10;

swipeDistance tells us any movement greater than 10 pixels will be considered a

swipe.

You are free to change this value obviously, and I am encouraging you to do as it's

been declared as global variable.

Now let's explain swipe idea: once the spaceship is moving from one side of the 

tunnel to another, we are checking if the player moves the finger and we detect a 

swipe, we stop the current verticalTween tween then we call a new tween to 

move the spaceship down. Perfect, but we still have to decide how to see if the 

player is swiping.

Each finger or mouse gesture starts with a mouse press or with a touch.

We are already able to detect when the player starts clicking or touching the game.

It's in the routine which handles ship movement from side to side.

When the player interacts with the screen, Phaser can register the coordinates of 

the input. Inside its routines, Phaser knows there is an active pointer – that how it 

calls the finger or the mouse arrow – and call also track it over time.

42



Create HTML5 Vertical Endless Runner cross platform games

The solution is simple: when we have an active pointer, we keep following it and 

see if it's moving. Then if the distance between the starting input coordinates and 

the current input coordinates is greater than  swipeDistance, we can say the 

player is swiping.

We are going to modify playGame object heavily but easily, have a look:

var playGame = function(game){};
playGame.prototype = {  
     create: function(){
          // same as before
          this.ship = game.add.sprite(this.shipPositions[0], 860, "ship");
          this.ship.side = 0;
          this.ship.canMove = true;
          this.ship.canSwipe = false;
          this.ship.anchor.set(0.5);
          game.physics.enable(this.ship, Phaser.Physics.ARCADE);
          game.input.onDown.add(this.moveShip, this);
          game.input.onUp.add(function(){
               this.ship.canSwipe = false;
          }, this);
          this.smokeEmitter = game.add.emitter(this.ship.x, this.ship.y + 10, 20);
          // same as before 
     },
     moveShip: function(){
          this.ship.canSwipe = true;
          if(this.ship.canMove){
               // same as before
          }          
     },
     update: function(){
          this.smokeEmitter.x = this.ship.x;
          this.smokeEmitter.y = this.ship.y;
          if(this.ship.canSwipe){
               if(Phaser.Point.distance(game.input.activePointer.positionDown, 

game.input.activePointer.position) > swipeDistance){
                    this.restartShip();          
               }   
          }
     },
     restartShip: function(){
          this.ship.canSwipe = false;
          this.verticalTween.stop();
          this.verticalTween = game.add.tween(this.ship).to({
               y: 860  
          }, 100, Phaser.Easing.Linear.None, true);
          this.verticalTween.onComplete.add(function(){
               this.verticalTween = game.add.tween(this.ship).to({
                    y: 0
               }, shipVerticalSpeed, Phaser.Easing.Linear.None, true);     
          }, this) 
     }   
}

43



Create HTML5 Vertical Endless Runner cross platform games

There's almost nothing new in the above code, anyway let's explain it line by line:

this.ship.canSwipe = false;

We set a canSwipe property to the spaceship, initially set to false because at the 

beginning the spaceship cannot swipe.

game.input.onUp.add(function(){
     this.ship.canSwipe = false;
}, this);

canSwipe is also set to false when the player releases the input – mouse or 

finger – from the game.

If there's no input, there can't be a swipe.

input.onUp.add(function, context) executes function function in 

context context each time an input is released. 

When moveShip method is called, that is when the player tapped or clicked on the

game, we can set canSwipe to true and start checking for swipes.

this.ship.canSwipe = true;

In update method, if the ship can swipe, we check if the distance from the current

mouse or finger position and the starting mouse or finger position is greater than 

swipeDistance.

This will be the case we can say the player is swiping.

if(this.ship.canSwipe){
     if(Phaser.Point.distance(game.input.activePointer.positionDown, 

game.input.activePointer.position) > swipeDistance){
          this.restartShip();          
     }   
}

In this case we can say the player is swiping.

44



Create HTML5 Vertical Endless Runner cross platform games

input.activePointer.positionDown property contains the point with the x/y 

values of an input when is was set down.

input.activePointer.position property contains the point with the current 

x/y values of the input.

Point.distance(a, b) returns the euclidean distance between a and b Point 

objects.

What happens when the player is swiping? We call restartShip method:

restartShip: function(){
     this.ship.canSwipe = false;
     this.verticalTween.stop();
     this.verticalTween = game.add.tween(this.ship).to({
          y: 860  
     }, 100, Phaser.Easing.Linear.None, true);
     this.verticalTween.onComplete.add(function(){
          this.verticalTween = game.add.tween(this.ship).to({
               y: 0
          }, shipVerticalSpeed, Phaser.Easing.Linear.None, true);     
     }, this) 
}  

Let's have a look at the game: once the spaceship is running up, swipe to see how 

it moves back down then restarts moving up.

There are four things to do in when restarting the spaceship: first we set canSwipe

45



Create HTML5 Vertical Endless Runner cross platform games

to false because the spaceship is already reacting to a swipe.

Then we stop the vertical tween to create a fast tween to quickly move the ship 

down and when this tween is completed we restart the tween which should move 

the spaceship up.

stop() method of a tween stops the tween.

And the whole part managing spaceship movement is completed. Now let's put 

the spaceship in trouble.

Adding barriers
Before we start adding barriers, let's read again what I wrote in previous chapter: 

“And the whole part managing spaceship movement is completed”.

Wait a moment – you may think – the spaceship isn't actually moving through the 

tunnel. I was expecting the spaceship to run through the tunnel, with the camera 

following it. All in all we are making an endless runner!

You're right. The spaceship should move through the tunnel and the camera 

should follow it. But we are game developers, and we make tricks. The ship is not

moving. The camera is not moving. Only the obstacles – and other few things 

such as stuff to collect if any – move towards the ship.

The result is we give the player the same feeling as if the spaceship were flying 

with the camera following it, with far less effort. This is how most endless runner 

are made. Player does not run. Environment does.

Back to our game, we are going to add spaceship worst enemy: a barrier. 

You will see how the barrier is the most important actor in this game, because it's 

the sprite which with its vertical velocity will give the player the fake feeling the 

spaceship is moving through a tunnel. Lie. The only things which move are the 

barriers.

Talking about moving the barriers, let's define a new global variable called 

barrierSpeed which will store the vertical barrier speed, in pixels per second.

46



Create HTML5 Vertical Endless Runner cross platform games

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;
var shipVerticalSpeed = 15000; 
var swipeDistance = 10;
var barrierSpeed = 280;

Before we start talking about placing barriers, let me introduce a bit of theory 

about the way we should be adding barriers.

In your games, it's always a good practice to group actors. Actors in a game can be

seen like files in a folder. If you have a single folder with texts, images, sounds 

and movies it will be difficult to check for all texts or do some operation on just 

sounds and movies. That's why you know you have to create different folders to 

conveniently store different file types.

Actors in a game should follow the same rules, so the priority now is to know how

to group all the barriers we are about to create. This is where Phaser groups help 

us a lot.

A Group is a container for display objects including Sprites and Images.

We'll get back to groups in a moment, meanwhile here it is the barrier image we 

are saving into sprites folder:

47



Create HTML5 Vertical Endless Runner cross platform games

It's a 320x24 white rectangle. It must be white to allow us to tint as we want.

Let's preload barrier sprite adding a line to preload method in preload object:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
     game.load.image("tunnelbg", "assets/sprites/tunnelbg.png");
     game.load.image("wall", "assets/sprites/wall.png");
     game.load.image("ship", "assets/sprites/ship.png");
     game.load.image("smoke", "assets/sprites/smoke.png");
     game.load.image("barrier", "assets/sprites/barrier.png");
}

Now it's time to see a very important feature, not only in Phaser but in the whole 

world of programming: extending classes.

You can imagine barriers will be created as sprites, just like we added the 

spaceship.

But there will be a lot of barriers, which will behave as sprites but also will do 

some extra stuff basic sprites aren't able to do, like moving from top to bottom of 

the game, and some other things you'll see later.

This said, we can consider the barrier as “sprites with something more”. That's 

why we will extend Sprite class.

The idea at the base of extending a class is simple but powerful: when you want to

create a new class and there is already a class that includes some of the code that 

you want, you can build you new class over the existing class.

When we extend an existing class, the new class inherits all the attributes and 

methods of the parent class.

Back to our barriers, we could just create them as simple sprites, but I like to think

the scope of this book is not just a “create this game for the sake of creating this 

game”.

I also want to give you all the core concepts which you will use to create more 

48



Create HTML5 Vertical Endless Runner cross platform games

complex games on your own.

Add some lines to create method in playGame object:

create: function(){
     // same as before
     this.barrierGroup = game.add.group(); 
     var barrier = new Barrier(game, barrierSpeed, tintColor);
     game.add.existing(barrier);
     this.barrierGroup.add(barrier); 
}

This was a great start, because we have four lines with four new concepts, so let's 

break and explain the code line by line:

this.barrierGroup = game.add.group(); 

barrierGroup is the group which will contain all barriers.

You can add it just like you previously added sprites, using add.

add.group() adds a group to the game.

Now, let's add the barrier.

var barrier = new Barrier(game, barrierSpeed, tintColor);

barrier is the variable and Barrier is the name of the new class.

Since it's our custom class, we can also pass our own arguments, which in this 

case are the game itself, the speed and the tint color.

game.add.existing(barrier);

And this is how we add the barrier to the game, using add as we are used to.

add.existing(displayObject) adds an existing displayObject display 

object to the game world.

Finally we tell Phaser we want the barrier to be part of barrierGroup group:

49



Create HTML5 Vertical Endless Runner cross platform games

this.barrierGroup.add(barrier); 

This is when add comes into play once again.

add(object) method of a group adds an existing object object as the top child 

in this group.

Everything is ready to place a barrier as an extended class, except we didn't 

already code it, so let's go straight to the point.

All the code needed to define Barrier class must be written outside any object, 

method or function, at the same level you declared game variable itself and all 

global variables. This will make your class to be available anywhere in the game. 

Barrier = function (game, speed, tintColor) {
     var positions = [(game.width - tunnelWidth) / 2, (game.width + tunnelWidth) /

2];
     var position = game.rnd.between(0, 1);
     Phaser.Sprite.call(this, game, positions[position], -100, "barrier");
     var cropRect = new Phaser.Rectangle(0, 0, tunnelWidth / 2, 24);
     this.crop(cropRect);
     game.physics.enable(this, Phaser.Physics.ARCADE);
     this.anchor.set(position, 0.5);
     this.tint = tintColor;     
     this.body.velocity.y = speed;
};

Barrier.prototype = Object.create(Phaser.Sprite.prototype);
Barrier.prototype.constructor = Barrier;

That easy? Yes, that easy. We are extending a sprite so we have to code only the 

stuff regular sprites don't already do.

Look how we made Barrier class as there are some new concepts to see:

Barrier = function (game, speed, tintColor) {
     // content
}

Barrier.prototype = Object.create(Phaser.Sprite.prototype);
Barrier.prototype.constructor = Barrier;

This is the blueprint of the creation of a class which extends Phaser Sprite class.

50



Create HTML5 Vertical Endless Runner cross platform games

First we declare the function which will create the barrier itself, with its 

arguments as shown before. Then we specify its prototype is built upon 

Phaser.Sprite.prototype which basically is Phaser Sprite class.

Finally we specify the constructor of the class which is Barrier. That's why we 

created the barrier with

var barrier = new Barrier(game, barrierSpeed, tintColor);

because Barrier is the constructor.

In class based object oriented programming, a constructor of a class is a special

function called to create an object which belongs to the class.

You will see how easy will be the process of adding how many barriers we want 

simply creating new Barrier instances, but before let's have a look at the game:

51



Create HTML5 Vertical Endless Runner cross platform games

Look how the barrier travels from top to bottom of the stage.

Back to Barrier content now:

var positions = [(game.width - tunnelWidth) / 2, (game.width + tunnelWidth) / 2];
var position = game.rnd.between(0, 1);

Barriers can be created both on the left and the right side of the tunnel, so 

positions is the array which stores left and right barrier positions, according to 

game width and tunnel width. Then position variable randomly choose a number

which can be 0 or 1.

Phaser.Sprite.call(this, game, positions[position], -100, "barrier");

With call method we are invoking the creation of a sprite passing this as the 

barrier itself, the game references and the other arguments you already saw in the 

creation of a sprite, such has the horizontal and vertical positions and the key of 

the graphic resource. 

var cropRect = new Phaser.Rectangle(0, 0, tunnelWidth / 2, 24);

A new concept ready to be explained: the barrier image is 320x24 pixels, but we 

don't need the barrier to be that wide.

Barrier width will vary according to tunnel width, so we have to crop the barrier 

accordingly.

The idea is to create a rectangle with the crop area – cropRect – then crop the 

sprite.

new Rectangle(x, y, width, height) creates a new Rectangle object with 

the top left corner specified by the x and y parameters and with the specified 

width and height parameters.

Now that crop area has been defined, let's just crop the sprite:

52



Create HTML5 Vertical Endless Runner cross platform games

this.crop(cropRect);

And now the barrier will have the proper width needed for our game.

crop(rectangle) allows you to crop the texture being used to display the sprite

using rectangle crop area. Sprite width and height properties will be adjusted

accordingly.

Just like we did with the spaceship, we are enabling ARCADE physics on the 

barrier.

game.physics.enable(this, Phaser.Physics.ARCADE);

Then we tint the sprite and set its anchor point, which will be (0, 0.5) – left 

center pixel – for left barriers and (1, 0.5) – right center pixel – for right 

barriers.

this.anchor.set(position, 0.5);
this.tint = tintColor;    

We can also assign a velocity to ARCADE physics bodies, and in this case we are 

assigning speed vertical velocity.

this.body.velocity.y = speed;

Now the barrier will move vertically by speed pixels by second.

body.velocity is the speed of body, measured in pixels per second. 

body.velocity.x is the horizontal speed and body.velocity.y is the vertical 

speed.

Congratulations. I mean it. You survived barrier creation and class extension.

It will be easier from now on.

53



Create HTML5 Vertical Endless Runner cross platform games

Removing Barriers
I know, you just made such an effort to create a barrier, and I am showing you 

how to remove it. That's rude.

There's no point in keeping a barrier in the game forever. Sooner or later, it will 

move outside game canvas, and this is the moment to free some memory 

removing it from the game.

So we will create a barrier update method which like all update methods in 

Phaser will be executed at each frame:

Barrier.prototype.update = function(){
     if(this.y > game.height){
          this.destroy();
     }
}

As soon as the vertical position is greater than the height of the game, we destroy 

the barrier. Have a look at how I am checking for the height of the game. The 

game is known for being 960 pixels tall, but I am not using 960 in the if 

statement but game height property. This choice will be very important later in 

the game.

Continuously adding barriers
Having one single, lonely barrier running towards your spaceship is not that 

exciting, because we expect a lot of barriers to be avoided.

The first thing to decide – and custom whenever we want – is the distance from a 

barrier and another. We need another global function called barrierGap which 

will store the distance between barriers, in pixels.

var game;
// same as before
var barrierGap = 120;

To achieve a 120 pixels distance between two barriers, we have to create a new 

54



Create HTML5 Vertical Endless Runner cross platform games

barrier once the previous barrier traveled for 120 pixels, then create a new one 

when the newborn barrier traveled for 120 pixels, and so on.

No matter the way we are going to add new barriers, it's easy to imagine we are 

about to write some code to be used a lot of time, each time a barrier needs to be 

added.

When you know you will be using the same code a lot of times in your script, 

always try to turn it into a function, or a method in this case, like addBarrier 

method which is added to playGame object.

It takes two arguments: the group where to add the barrier and the tint color of the 

barrier.

The code itself does not change, it's just the way we call it:

var playGame = function(game){};
playGame.prototype = {  
     create: function(){
          // same as before
          this.barrierGroup = game.add.group(); 
          this.addBarrier(this.barrierGroup, tintColor);
     },
     moveShip: function(){
          // same as before          
     },
     update: function(){
          // same as before
     },
     restartShip: function(){
          // same as before
     },
     addBarrier: function(group, tintColor){
          var barrier = new Barrier(game, barrierSpeed, tintColor);
          game.add.existing(barrier);
          group.add(barrier); 
     }   
}

With a new playGame method which can create a new barrier anytime, the idea is 

to add a new barrier when the previous barrier gets to a vertical position greater 

than barrierGap value.

Since each barrier will stay for some time in a vertical position greater than 

barrierGap value before it leaves the game to the bottom and gets destroyed, we 

55



Create HTML5 Vertical Endless Runner cross platform games

must ensure each barrier can create only one new barrier as soon as it gets to 

barrierGap vertical position.

For this reason we need to add a new property to each barrier, called 

placeBarrier.

Initially is set to true because each barrier when it's created is capable to place 

another barrier. Let's modify a bit Barrier class constructor:

Barrier = function (game, speed, tintColor) {
     // same as before
     this.placeBarrier = true;
};

And a couple of lines also need to be added to update method:

Barrier.prototype.update = function(){
     if(this.placeBarrier && this.y > barrierGap){
          this.placeBarrier = false;
          playGame.prototype.addBarrier(this.parent, this.tint);
     }   
     if(this.y > game.height){
          this.destroy();
     }
}

What happens when placeBarrier is true and the vertical position of the barrier

is greater than barrierGap?

As you can see, placeBarrier method is set to false.

This will ensure we won't enter anymore in the if statement because the condition

now it will return false no matter the vertical position of the barrier.

Look what happens inside the if statement:

playGame.prototype.addBarrier(this.parent, this.tint);

We simply call addBarrier method we created earlier in playGame object, and a 

new barrier is created and ready to generate another barrier which will generate 

another barrier and so on.

56



Create HTML5 Vertical Endless Runner cross platform games

Test the game and see how you can get infinite barriers in random positions.

This is the real meaning of an endless runner.

Now at each play the game will generate an infinite tunnel.

You will never play the same tunnel twice thanks to randomization, and the player

will feel like the spaceship is actually traveling through an endless tunnel.

I already explained this is a fake effect, the spaceship is not moving but the whole 

environment moving towards the spaceship.

But it works, with a few JavaScript lines we are creating a realistic endless runner.

And if you were skeptic at first, maybe seeing a spaceship surrounded by 

approaching barriers will change your mind, run the game:

Now, let's turn barriers into deadly obstacles, you will see how easily Phaser 

together with ARCADE physics manage collisions between objects.

57



Create HTML5 Vertical Endless Runner cross platform games

Checking collisions
Having a lot of barriers running is quite pointless if they do not harm your 

spaceship.

That's why we need to check for collisions between the spaceship and the barriers.

ARCADE physics provides a great support for collision detection, which will 

allow us to check for collisions with only one line of code rather than bothering 

with complex operations hunting for shape overlapping.

It's not the most accurate collision detection ever, but it's exactly what we need for

these kind of games.

Let's add a couple of lines to update method in playGame object:

update: function(){
     this.smokeEmitter.x = this.ship.x;
     this.smokeEmitter.y = this.ship.y;
     if(this.ship.canSwipe){
          if(Phaser.Point.distance(game.input.activePointer.positionDown, 

game.input.activePointer.position) > swipeDistance){
               this.restartShip();          
          }   
     }
     game.physics.arcade.collide(this.ship, this.barrierGroup, function(s, b){
          game.state.start("GameOverScreen");
     })
}

At each frame we check for collision between the spaceship and any child of 

barrierGroup group, that is to any barrier.

collide(object1, object2, collideCallback) checks for collision 

between object1 and object2, which can be either sprites or groups. If an 

object is a group, the collision test is made against all the children of the group. 

collideCallback(obj1, obj2) is called in case of collision and its arguments

are the two objects which collided.

In our case the callback function has two arguments which are the two objects 

which collided.

The first object is the spaceship – that's why I called it s – and the second object is

58



Create HTML5 Vertical Endless Runner cross platform games

the barrier involved in the collision – b.

We aren't doing anything with them at the moment since we are only launching 

GameOverScreen state, but we will find them useful later in the development of 

the game.

And since we are going to launch GameOverScreen state, at least we want to 

prompt something on the console.

var gameOverScreen = function(game){};
gameOverScreen.prototype = {
     create:function(){
          console.log("game over");
     }    
}

Run the game and crash into a barrier, you will be taken to a black screen – 

actually GameOverScreen – and you will see the game over message in your 

browser console.

With this collision test we can handle when the spaceship comes to a bad end, but 

there's still something to do to improve this feature.

59



Create HTML5 Vertical Endless Runner cross platform games

Dying with style
Once the spaceship hits a barrier, we will add a tween to simulate the pilot lost 

control of the spaceship, then we'll make it explode with a particle effect.

This will look really nice, guaranteed.

First, we need to add a new property to spaceship. The property is called 

destroyed and will help us to know when the spaceship is going to be destroyed.

Initially starts at false since the spaceship is not going to be destroyed – yet.

Add this line to create property in playGame object:

create: function(){
     // same as before
     this.ship = game.add.sprite(this.shipPositions[0], 860, "ship");
     this.ship.side = 0;
     this.ship.destroyed = false;
     this.ship.canMove = true;
     this.ship.canSwipe = false;
     this.ship.anchor.set(0.5);
     //
}

Why are doing all this? The game already works. When the spaceship hits a 

barrier, we start GameOverScreen state. It's enough, isn't it?

60



Create HTML5 Vertical Endless Runner cross platform games

When you are playing, there's nothing worse than suddenly switching from 

actively playing to game over screen without any kind of feedback. It's annoying 

and gives the feeling the game is somehow incomplete, so we are going to add 

some eye candy effects when the player dies.

The first thing is to run the collision check only if the spaceship isn't already about

to be destroyed. That's why there's that if statement in update method:

update: function(){
     this.smokeEmitter.x = this.ship.x;
     this.smokeEmitter.y = this.ship.y;
     if(this.ship.canSwipe){
          if(Phaser.Point.distance(game.input.activePointer.positionDown, 

game.input.activePointer.position) > swipeDistance){
               this.restartShip();          
          }   
     }
     if(!this.ship.destroyed){
          game.physics.arcade.collide(this.ship, this.barrierGroup, function(s, b)

{
               this.ship.destroyed = true
               this.smokeEmitter.destroy();
               var destroyTween = game.add.tween(this.ship).to({
                    x: this.ship.x + game.rnd.between(-100, 100),
                    y: this.ship.y - 100,
                    rotation: 10
               }, 1000, Phaser.Easing.Linear.None, true);
               destroyTween.onComplete.add(function(){
                    var explosionEmitter = game.add.emitter(this.ship.x, 

this.ship.y, 200);
                    explosionEmitter.makeParticles("smoke");
                    explosionEmitter.setAlpha(0.5, 1);
                    explosionEmitter.minParticleScale = 0.5;
                    explosionEmitter.maxParticleScale = 2;
                    explosionEmitter.start(true, 2000, null, 200);
                    this.ship.destroy();
                    game.time.events.add(Phaser.Timer.SECOND * 2, function(){
                         game.state.start("GameOverScreen");
                    });
               }, this);
          }, null, this)
     }
}

Let's have a look at the new lines we added:

this.ship.destroyed = true;
this.smokeEmitter.destroy();

When we start the explosion routine, we have to set destroyed property to true 

61



Create HTML5 Vertical Endless Runner cross platform games

so we won't check for collisions anymore. Also, just like a sprite, we remove the 

smoke emitter using destroy() method.

var destroyTween = game.add.tween(this.ship).to({
     x: this.ship.x + game.rnd.between(-100, 100),
     y: this.ship.y - 100,
     rotation: 10
}, 1000, Phaser.Easing.Linear.None, true);

The animation showing the spaceship out of control is just a tween which 

modifies x, y and rotation properties together. Phaser allows to tween more than

one property at once, it's an interesting feature because we can modify everything 

we place into to method. The tween lasts one second, then it's time to destroy the 

spaceship.

destroyTween.onComplete.add(function(){
     var explosionEmitter = game.add.emitter(this.ship.x, 

this.ship.y, 200);
     explosionEmitter.makeParticles("smoke");
     explosionEmitter.setAlpha(0.5, 1);
     explosionEmitter.minParticleScale = 0.5;
     explosionEmitter.maxParticleScale = 2;
     explosionEmitter.start(true, 2000, null, 200);
     this.ship.destroy();
     game.time.events.add(Phaser.Timer.SECOND * 2, function(){
          game.state.start("GameOverScreen");
     });
}, this);

When the animation of the spaceship out of control is complete, we remove the 

spaceship using destroy method so we will also free some memory and create an 

explosion of particles, using as particle the same image we used for the smoke.

Remember if you want the emitter to fire particles all at once at the same time like

an explosion, the first argument of start method must be true.

minParticleScale and maxParticleScale properties define respectively the 

minimum and maximum scale to be randomly applied to each particle.

Then we wait two seconds before switching to game over state. I also want you to 

notice this time we also need to pass the context to collide method, that's why 

we added two new arguments, using the full range of arguments provided by the 

62



Create HTML5 Vertical Endless Runner cross platform games

method.

collide(object1, object2, collideCallback, processCallback, 

callbackContext) checks for collision between object1 and object2 then 

calls collideCallback in callbackContext context if object1 and object2 

collide.

What about processCallback? This function can perform your own additional 

checks on the two objects that collided – for example you could test for velocity, 

health, or other game variables – and eventually decide whether to continue with 

the collision returning true then calling collideCallback and physically 

modifying objects body velocities or not to continue with the collision returning 

false. Don't worry about it at the moment as we absolutely want any collision to 

be deadly. 

Invulnerability
It would be nice if once you swipe you could be invulnerable for some time. This 

will be another customizable feature, placed in a new global variable called 

shipInvisibilityTime containing the amount in milliseconds of invulnerability.

var game;
// same as before
var shipInvisibilityTime = 1000;

The idea is to make the spaceship semi transparent when it's invulnerable, so we 

will add a condition in the main if in update method in playGame object, so 

collisions will be checked only if the spaceship isn't already destroyed and is fully 

opaque.

update: function(){
     // same as before
     if(!this.ship.destroyed && this.ship.alpha == 1){
          // same as before 
     }
}

63



Create HTML5 Vertical Endless Runner cross platform games

We are going to set the alpha when the player swipes, so there are a couple of 

lines to add to restartShip method, setting spaceship alpha to 0.5 (half 

transparent) and launching a tween which will set the alpha back to 1 (fully 

opaque) in shipInvisibilityTime milliseconds, using a “bounce in” easing.

restartShip: function(){
     this.ship.canSwipe = false;
     this.verticalTween.stop();
     this.ship.alpha = 0.5;
     this.verticalTween = game.add.tween(this.ship).to({
          y: 860  
     }, 100, Phaser.Easing.Linear.None, true);
     this.verticalTween.onComplete.add(function(){
          this.verticalTween = game.add.tween(this.ship).to({
               y: 0
          }, shipVerticalSpeed, Phaser.Easing.Linear.None, true); 
          var alphaTween = game.add.tween(this.ship).to({
               alpha: 1     
          }, shipInvisibilityTime, Phaser.Easing.Bounce.In, true);        
     }, this) 
}

Now launch the game, and swipe:

Your spaceship will be flashing and semi transparent and invulnerable for a while.

The flash effect is given by the “bounce in” easing. And this was the last feature to

add to ship movement.

64



Create HTML5 Vertical Endless Runner cross platform games

Swiping could have saved your spaceship when you were about to crash into a 

barrier, but most of the times once your ship was back to the bottom of the tunnel 

it crashed anyway into a barrier because barriers kept moving and you would 

often find one of them directly in front of your spaceship.

Some fixes here and there
In the making of any game, you will often find yourself in front of a working 

prototype which makes you really proud of it. Until you find a bug. And another. 

And another one.

Don't worry. It's perfectly normal. A great percentage of time spent in game 

developing is used to fix bugs.

There is only one reason why your game does not have bugs: you did not test it.

So my advice is: play the game! Play once, twice, more and more, do unusual 

things, you'll never know what players will try to do. But your game should work 

properly no mater what they do.

I am showing you three little bugs in the game, be honest with yourself and think 

“was I aware of them?”

Bug number one: your spaceship explodes when hitting a barrier only if the ships 

hits frontally the barrier. If you hit the barrier with the side of the spaceship while 

moving horizontally through the tunnel, you won't get destroyed.

To fix this, we have to change the arguments of collision detection method, setting

collideCallback to null and processCallback to the function previously 

bound to collideCallback.

game.physics.arcade.collide(this.ship, this.barrierGroup, null, function(s, b){
     // same as before
}, this)

To be honest, I did not find a real reason for this kind of behavior, and I think it's a

glitch of Phaser itself which will be fixed soon.

65



Create HTML5 Vertical Endless Runner cross platform games

Bug number two: you can restart the spaceship – that is move it back down – even

if it already collided into a barrier and is about to explode, and you can also restart

it while it's still invisible.

To fix this, the whole code of restartShip method should be executed only if the

spaceship isn't going to be destroyed and is completely opaque.

restartShip: function(){
     if(!this.ship.destroyed && this.ship.alpha == 1){
          // same as before
     }
}

Bug number three: once the spaceship hits a barrier, the barrier decreases its speed

or even stops moving.

This happens because in a physics world when two rigid bodies collide their 

forces change.

Unfortunately this breaks the illusion that the spaceship is actually traveling in our

fake endless tunnel, so we have to prevent it adding immovable property to barrier

physics body.

Barrier = function (game, speed, tintColor) {
     var positions = [(game.width - tunnelWidth) / 2, (game.width + tunnelWidth) /

2];
     var position = game.rnd.between(0, 1);
     Phaser.Sprite.call(this, game, positions[position], -100, "barrier");
     var cropRect = new Phaser.Rectangle(0, 0, tunnelWidth / 2, 24);
     this.crop(cropRect);
     game.physics.enable(this, Phaser.Physics.ARCADE);
     this.anchor.set(position, 0.5);
     this.tint = tintColor;     
     this.body.immovable = true;
     this.body.velocity.y = speed;
     this.placeBarrier = true;
};

Launch the game, and the barrier won't be affected by collisions.

A body with immovable property set to true will not receive any impacts from 

other bodies.

Now all the bugs are fixed, but remember to test properly your game. Always.

66



Create HTML5 Vertical Endless Runner cross platform games

Increasing difficulty
We don't want players to abuse swipe feature, so at each swipe we will increase 

barriers speed. To make this feature customizable, let's add a new global variable:

var game;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;
var shipVerticalSpeed = 15000; 
var swipeDistance = 10;
var barrierSpeed = 280;
var barrierGap = 120;
var shipInvisibilityTime = 1000;
var barrierIncreaseSpeed = 1.1;

barrierIncreaseSpeed is the number which will multiply current barrier speed. 

At each swipe, speed will be multiplied by 1.1.

This way once the player swipes, starting from next barrier each barrier will have 

a higher speed, but what about existing barriers?

They keep the same speed they had when they were created. We cannot permit it, 

because in the real world when a spaceship increases its speed, everything 

standing in front of it seems to move faster towards it.

The problem is our spaceship does not move – remember? It's a fake runner – so 

we have to increase the speed of existing barriers too.

We can do it with four lines in restartShip method:

restartShip: function(){
     if(!this.ship.destroyed && this.ship.alpha == 1){
          barrierSpeed *= barrierIncreaseSpeed;
          for(var i = 0; i < this.barrierGroup.length; i++){
               this.barrierGroup.getChildAt(i).body.velocity.y = barrierSpeed;    
          }
          this.ship.canSwipe = false;
          // same as before
     }
}

First we increase barrierSpeed value multiplying it by barrierIncreaseSpeed.

67



Create HTML5 Vertical Endless Runner cross platform games

Then since we know all barriers are in barrierGroup group, and there are only 

barriers in barrierGroup, we loop through all the children in barrierGroup 

group and set their bodies y velocity to the new barrierSpeed value.

length property of a group returns the number of children in the group.

Try to run the game and swipe, and you will see your spaceship increase its speed.

Busted! You will actually see the barriers increase their speed.

Obviously the spaceship did not actually increase its speed, just don't tell it to 

anybody we looped through all barriers and increased their speed. 

getChildAt(i) method of a group returns the i-th child of a group. You get the

first child with getChildAt(0).

The game was challenging, but too permissive when the player swiped to move 

the spaceship back down. Now each swipe will make the game harder.

Everything is ready to make you score a lot of points.

Scoring
This will be one of the most difficult steps as we are going to introduce a lot of 

new concepts.

We need to show score segments along the tunnel, and in order to do it with the 

highest level of customization possible we need to introduce bitmap fonts, so 

unfortunately a bit of boring theory is needed.

All the text displayed on your browser is rendered using a font file which contains

all the information necessary to draw the shape of each character, no matter the 

size and scale.

When you print a string on the screen, each character is scaled and rendered, 

leading to two problems:

First, the process of scaling and rendering characters is quite CPU intensive, 

especially if you need to add run-time effects like outlines or shadows.

68



Create HTML5 Vertical Endless Runner cross platform games

Second, if you don't use a common font it's very likely most players won't have 

that font installed on their computers or mobile devices, so they won't be able to 

properly render it and a default font will be used instead.

This is where bitmap fonts come into play.

Basically, a bitmap font is an image file containing all the characters we need and 

a control file with the coordinates of each character in the image.

Now each character can be pre-rendered using multiple effects, loaded as an 

image, and placed to the screen using very little resources.

The drawback is each bitmap font file can contain only one font size, but it won't 

be a problem in our case

End of the boring theory, let's dive into coding again: we need two new global 

variables to define score sectors.

scoreHeight will be the height of each score sector in pixels, and 

scoreSegments is an array containing the value of each score sector, from the 

highest to the lowest.

var game;
// same as before
var scoreHeight = 100; 
var scoreSegments = [100, 50, 25, 10, 5, 2, 1];

In the example, I am using seven score sectors, each 100 pixels tall.

The highest score sector, the hardest to reach, will give you 100 points, the lowest 

score sector will give you only one point, and so on.

We need a new image called separator to delimit each score sector boundaries, 

so we are creating a 120x2 rectangle filled with the dark gray we used for the 

tunnel and saving it into sprites folder.

Look at our separator: it's dark gray but we will tint it too according to game 

randomly chosen color.

69



Create HTML5 Vertical Endless Runner cross platform games

Now it's time to create the bitmap font. There is a wide choice of tools to generate 

bitmap fonts, but the one I prefer – and actually use – is Littera bitmap font 

generator (http://kvazars.com/littera/), a free web application to generate bitmap 

fonts with all options you need.

It's very easy to use and when you export the font you can keep the default 

settings so you will get two files: a png file which is the image containing all 

characters and a fnt file containing font information.

I used a square font with size 72 and applied a light shadow, here it is an excerpt 

of the PNG file Littera generated on a green background:

The actual image has a transparent background. Remember to include all letters, 

numbers and symbol you plan to use in your game.

Both the png image and the fnt file will be placed in a new folder called fonts 

70

http://kvazars.com/littera/


Create HTML5 Vertical Endless Runner cross platform games

which you will create inside assets folder, this way:

As usual before using assets we need to preload them.

There's a couple of new lines to add to preload method of preload object:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
     game.load.image("tunnelbg", "assets/sprites/tunnelbg.png");
     game.load.image("wall", "assets/sprites/wall.png");
     game.load.image("ship", "assets/sprites/ship.png");
     game.load.image("smoke", "assets/sprites/smoke.png");
     game.load.image("barrier", "assets/sprites/barrier.png");
     game.load.image("separator", "assets/sprites/separator.png");
     game.load.bitmapFont("font", "assets/fonts/font.png", 

"assets/fonts/font.fnt");
}

And now we are ready to use our bitmap font.

71



Create HTML5 Vertical Endless Runner cross platform games

load.bitmapFont(key, textureURL, xmlURL) adds new bitmap font loading

request, giving it unique key name and looking for textureURL image file and 

xmlURL data file. 

We are using both bitmap font and the separator image in create method of 

playGame object:

create: function(){
          // same as before
          rightWallBG.tileScale.x = -1;
          for(var i = 1; i <= scoreSegments.length; i++){
               var leftSeparator = game.add.sprite((game.width - tunnelWidth) / 2,

scoreHeight * i, "separator");
               leftSeparator.tint = tintColor;
               leftSeparator.anchor.set(1, 0)
               var rightSeparator = game.add.sprite((game.width + tunnelWidth) / 

2, scoreHeight * i, "separator");
               rightSeparator.tint = tintColor;
               var posX = (game.width - tunnelWidth) / 2 - leftSeparator.width / 

2;
               if(i % 2 == 0){
                    posX = (game.width + tunnelWidth) / 2 + leftSeparator.width / 

2;
               }
               game.add.bitmapText(posX, scoreHeight * (i - 1) + scoreHeight / 2 -

18 , "font", scoreSegments[i - 1].toString(), 36).anchor.x =
0.5;

          }
          this.barrierGroup = game.add.group(); 
          //same as before
     }

It seems a lot to do but you'll see it's just a couple of concepts, let's see the new 

lines in detail:

for(var i = 1; i <= scoreSegments.length; i++){
     // code
}

This loop iterates through all score segments

var leftSeparator = game.add.sprite((game.width - tunnelWidth) / 2, 
scoreHeight * i, "separator");

leftSeparator.tint = tintColor;
leftSeparator.anchor.set(1, 0)

72



Create HTML5 Vertical Endless Runner cross platform games

leftSeparator is the separator image we want to add to the bottom of each score

segment. As the name suggests, it's the left separator so its horizontal position is 

half the difference between game width and tunnel width, which is the exact point 

where left wall ends.

The vertical position is determined solely by the height of the score sector.

Current tint color is assigned to the image, and we set its anchor point to the right 

top pixel.

This way the separator will start where the tunnel begins, and will continue to the 

right.

var rightSeparator = game.add.sprite((game.width + tunnelWidth) / 
2, scoreHeight * i, "separator");

rightSeparator.tint = tintColor;

Same thing goes with the right separator, it's just this time it has been placed at 

half the sum of game with and tunnel width.

Everything else remains the same, with the exception of the anchor point which 

should be the left top pixel. Since this is the default value, there's no need to 

specify its value.

var posX = (game.width - tunnelWidth) / 2 - leftSeparator.width / 2;

posX is a temporary variable which defines the horizontal position of the bitmap 

text we are about to write. In this case it's in the middle of the left separator.

if(i % 2 == 0){
     posX = (game.width + tunnelWidth) / 2 + leftSeparator.width / 2;
}

If i – current loop index – can be divided by two, then posX changes to be in the 

middle of the right separator.

This way at each loop iteration, posX will switch from the middle of the left 

73



Create HTML5 Vertical Endless Runner cross platform games

separator to the middle of the right separator.

game.add.bitmapText(posX, scoreHeight * (i - 1) + scoreHeight / 2 - 18 , "font", 
scoreSegments[i - 1].toString(), 36).anchor.x = 0.5;

Everything is ready to add the bitmap text, which is not that different than adding 

a sprite. Also notice how the anchor point can be set appending the property at the 

end of the line.

add.bitmapText(x, y, font, text, size) adds text string written with a 

size points font font at coordinates x, y.

Launch the game, and see how bitmap fonts are placed to the canvas to display the

values for each score sector.

As you can see, everything is made to give you the most customization. Look how

left and right tunnels differ for score sectors heights and values.

74



Create HTML5 Vertical Endless Runner cross platform games

Highlighting score sector
In the original game when the spaceship enters a score sector, it highlights it.

We'll make the same effect using a tiled sprite with the image created for smoke. 

You should already know how to create and add a tiled sprite so here are the lines 

we are going to add to create method in playGame object:

create: function(){
     // same as before
     this.highlightBar = game.add.tileSprite(game.width / 2, 0, tunnelWidth, 

scoreHeight, "smoke");
     this.highlightBar.anchor.set(0.5, 0);
     this.highlightBar.alpha = 0.1;
     this.highlightBar.visible = false;          
}

highlightBar is the name of the tiled sprite, which tunnelWidth wide and 

scoreHeight tall. Have a look at visible property. The bar is not visible at the 

moment.

visible property of a sprite sets its visibility. true means the sprite is visible, 

false means the sprite is not visible.

The core of this concept can be found in update method of playGame object.

First we see if the spaceship is inside a score zone, then we determine which score

zone and finally we place the highlight bar accordingly and turn it visible.

update: function(){
     // same as before
     if(!this.ship.destroyed && this.ship.alpha == 1){
          if(this.ship.y < scoreHeight * scoreSegments.length){
               this.highlightBar.visible = true;
               var row = Math.floor(this.ship.y / scoreHeight);
               this.highlightBar.y = row * scoreHeight;
          }
          game.physics.arcade.collide(this.ship, this.barrierGroup, null, 

function(s, b){
               this.highlightBar.visible = false;

// same as before
          }, this)
     }
}

75



Create HTML5 Vertical Endless Runner cross platform games

Let's examine these lines in detail:

if(this.ship.y < scoreHeight * scoreSegments.length){
     // content
}

The spaceship is in the score zone if its vertical coordinate is less than 

scoreHeight multiplied by the number of score segments.

this.highlightBar.visible = true;

We still do not know where to place the highlight bar, but now it will be visible 

for sure.

var row = Math.floor(this.ship.y / scoreHeight);

This is how we determine which row the spaceship is traveling in.

The integer part of spaceship vertical position divided by scoreHeight.

this.highlightBar.y = row * scoreHeight;

And now we place the highlight bar, multiplying row by scoreHeight.

When the spaceship collides with a barrier, we turn highlightBar invisible, as 

well as when we move back the ship down, so we need to add a new line to 

restartShip method:

restartShip: function(){
     this.highlightBar.visible = false;
     // same as before
}

And now when you test the game, you will see the spaceship highlight score 

segments as it travels towards the top of the screen, but only when the spaceship 

enters a score segment. 

76



Create HTML5 Vertical Endless Runner cross platform games

Crash against a barrier or swipe and the highlight bar will disappear.

Showing score
Everything is ready to show score as the spaceship flies in the tunnel, so let's 

create a global variable to keep track of the score. Guess its name: score.

var game;
var score;
// same as before

In create method of playGame object, first we have to set score to zero, then we 

place a bitmap text near the bottom of the screen showing the score.

create: function(){
     score = 0;
     var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)]
     // same as before
     for(var i = 1; i <= scoreSegments.length; i++){
          // same as before
     }
     this.scoreText = game.add.bitmapText(20, game.height - 90 , "font", "0", 48);
     this.barrierGroup = game.add.group(); 
     // same as before
     game.time.events.loop(250, this.updateScore, this);         
}

scoreText property will be used to show player score.

77



Create HTML5 Vertical Endless Runner cross platform games

We want to check every ¼ seconds which height we reached with the spaceship 

and increase score accordingly.

time.events.loop(delay, callback, callbackContext) adds a looped 

event that will repeat forever and will fire after the given amount of delay 

milliseconds has passed, calling callback function in callbackContext 

context.

Every 250 milliseconds updateScore method will be called.

So we create an updateScore method to playGame object, and the code won't 

differ that much from what we wrote before to highlight score sector:

updateScore: function(){
     if(this.ship.alpha == 1 && !this.ship.destroyed){
          if(this.ship.y < scoreHeight * scoreSegments.length){
               var row = Math.floor(this.ship.y / scoreHeight);
               score += scoreSegments[row];
               this.scoreText.text = score.toString();
          }
     }  
}

Once we determined the row in which the spaceship is flying, we simply add to 

score the corresponding scoreSegments array value, then update scoreText 

acting on its text property.

Launch the game and try to enter in some scoring sectors to see how your score 

increases.

78



Create HTML5 Vertical Endless Runner cross platform games

Flying high is risky but you will get a lot of points. But there is another way to 

make points.

Adding friendly barriers
Not all barriers are deadly. To add a twist to the game, sometimes a friendly 

barrier will appear.

Friendly barriers can be recognized because they are white. If you hit a friendly 

barrier, you get a bonus score.

Moreover, once you'll get this concept – determine which kind of barrier the 

spaceship hits – you can create a lot of bonus effects, such as slow down the ship 

(busted! Slow down the barriers), give some extra seconds of invisibility, gain 

virtual currency which can be used in some kind of shop, and so on.

This would go beyond the scope of this book, anyway you are about to learn the 

main concept.

Let's start by adding a new global variable called friendlyBarRatio which tell 

us how frequent are friendly barriers.

var game;
var score;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;
var shipVerticalSpeed = 15000; 
var swipeDistance = 10;
var barrierSpeed = 280;
var barrierGap = 120;
var shipInvisibilityTime = 1000;
var barrierIncreaseSpeed = 1.1;
var scoreHeight = 100; 
var scoreSegments = [100, 50, 25, 10, 5, 2, 1];
var friendlyBarRatio = 2;

friendlyBarRatio is an integer number, and the lower the number, the more 

frequent friendly barriers will appear.

You can see how to create friendly barriers with some little changes to Barrier 

79



Create HTML5 Vertical Endless Runner cross platform games

class, nothing you can't handle:

Barrier = function (game, speed, tintColor) {
     var positions = [(game.width - tunnelWidth) / 2, (game.width + tunnelWidth) /

2];
     var position = game.rnd.between(0, 1);
     Phaser.Sprite.call(this, game, positions[position], -100, "barrier");
     var cropRect = new Phaser.Rectangle(0, 0, tunnelWidth / 2, 24);
     this.crop(cropRect);
     game.physics.enable(this, Phaser.Physics.ARCADE);
     this.anchor.set(position, 0.5);
     this.levelTint = tintColor;
     if(game.rnd.between(0, friendlyBarRatio)!=0){
          this.tint = tintColor;
          this.friendly = false;
     }     
     else{
          this.friendly = true;
     }
     this.body.immovable = true;
     this.body.velocity.y = speed;
     this.placeBarrier = true;
};

Let's see these changes in detail:

this.levelTint = tintColor;

First we create another property called levelTint where we save tintColor 

argument for later use.

if(game.rnd.between(0, friendlyBarRatio)!=0){
     this.tint = tintColor;
     this.friendly = false;
}     

This is where friendlyBarRatio comes into play. We draw a random number 

from zero to friendlyBarRatio and if the number is different than zero then we 

apply the barrier the tint color, just like we did before. We also add a friendly 

property set to false. This barrier is not friendly. It's deadly.

else{
     this.friendly = true;
}

80



Create HTML5 Vertical Endless Runner cross platform games

If the random number is zero, we just set friendly property to true and we don't

apply tint color, so the barrier will be white and friendly.

In update method, we can't pass anymore tint property to addBarrier method 

or any barrier generated by a friendly – without tint – barrier, will remain white.

That's why we saved levelTint property. This way we can pass the proper tint 

value no matter whether the current barrier has tint or not.

Barrier.prototype.update = function(){
     if(this.placeBarrier && this.y > barrierGap){
          this.placeBarrier = false;
          playGame.prototype.addBarrier(this.parent, this.levelTint);
     }   
     if(this.y > game.height){
          this.destroy();
     }
}

With friendlyBarRatio set to 2, roughly 1 out of 3 barriers will be friendly. I 

suggest to set it to 14 to have 1/15 friendly barriers.

Finally we have to decide what to do when the spaceship hits a friendly barrier.

There are some changes to do to collision routine to add the case we hit a friendly 

barrier.

game.physics.arcade.collide(this.ship, this.barrierGroup, null, function(s, b){
     if(!b.friendly){
          // same as before
     }
     else{
          if(b.alpha == 1){
               var barrierTween = game.add.tween(b).to({
                    alpha:0
               }, 200, Phaser.Easing.Bounce.Out, true);
               if(this.ship.y < scoreHeight * scoreSegments.length){
                    var row = Math.floor(this.ship.y / scoreHeight);
                    score += scoreSegments[row] * 5;
                    this.scoreText.text = score.toString();
               }
          }
     }
}, this)

The idea is to keep unfriendly barriers lethal, while destroying friendly barriers 

81



Create HTML5 Vertical Endless Runner cross platform games

adds a bonus score according to the height of the spaceship.

Run the game and chase for white barriers, you will see your score increases as 

barriers get destroyed.

Have a look at the magic behind it:

if(!b.friendly){
     // same as before
}

Nothing changes if friendly property is false. Your spaceship explodes.

The else statement contains the code to run when friendly property is true.

if(b.alpha == 1){
     var barrierTween = game.add.tween(b).to({
          alpha:0
     }, 200, Phaser.Easing.Bounce.Out, true);
     if(this.ship.y < scoreHeight * scoreSegments.length){
          var row = Math.floor(this.ship.y / scoreHeight);
          score += scoreSegments[row] * 5;
          this.scoreText.text = score.toString();
     }
}

When the spaceship hits a friendly barrier, we use a tween on its alpha to make it 

disappear. That's why the first thing we do is checking for barrier alpha to be 1. To

see if this is the first time we hit the barrier.

var barrierTween = game.add.tween(b).to({
     alpha:0
}, 200, Phaser.Easing.Bounce.Out, true);

82



Create HTML5 Vertical Endless Runner cross platform games

Then we tween barrier alpha to zero

if(this.ship.y < scoreHeight * scoreSegments.length){
     var row = Math.floor(this.ship.y / scoreHeight);
     score += scoreSegments[row] * 5;
     this.scoreText.text = score.toString();
}

Finally we check if the spaceship is in the score zone, and multiply the score zone 

by five – you can change it as you want – then update the score.

I just would like you to see how we added a new game feature without introducing

new concepts, mostly copying and pasting code we wrote before.

This means you are slowing mastering Phaser, as you don't need to learn new stuff

each time you want to change something in your game.

Creation of game over state
It's been a long time we have a game over state which has been left empty.

Now we are going to add content to it, rewriting the entire gameOverScreen 

object.

var gameOverScreen = function(game){};
gameOverScreen.prototype = {
     create: function(){  
          var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
          titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
          game.add.bitmapText(game.width / 2, 50 , "font", "Your score", 

48).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 150 , "font", score.toString(), 

72).anchor.x = 0.5;
          var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
          playButton.anchor.set(0.5);
          var tween = game.add.tween(playButton).to({
               width: 220,
               height:220
          }, 1500, "Linear", true, 0, -1); 
          tween.yoyo(true);
     },
     startGame: function(){
          game.state.start("PlayGame");     
     }    
}

83



Create HTML5 Vertical Endless Runner cross platform games

It's very similar to the title screen and there's nothing new in it.

We place the background, assign it a random tint color, display player score and 

add the play button with its pulse tween.

Once the player presses the button, the game restarts calling PlayGame state.

Run the game, crash into a barrel, see the game over screen and you can restart the

game by pressing the button.

What about showing the best score so far?

Saving high scores
When playing a game, you will quickly realize there is no point in making a great 

score if you can't save it and try to beat it later.

We are going to cover how to save your best score, and keep it saved even if you 

close the browser window or turn off your computer or device.

All modern browsers support local storage, a way used by web pages to locally 

store data in a key/value notation.

The information you save will continue to be stored even when you shut down 

your device and can be read every time you launch your game.

84



Create HTML5 Vertical Endless Runner cross platform games

This is exactly what we need.

Let's create two new variables:

var game;
var score;
var savedData;
var bgColors = [0xF16745, 0xFFC65D, 0x7BC8A4, 0x4CC3D9, 0x93648D, 0x7c786a, 

0x588c73, 0x8c4646, 0x2a5b84, 0x73503c];
var tunnelWidth = 256;
var shipHorizontalSpeed = 100;
var shipMoveDelay = 0;
var shipVerticalSpeed = 15000; 
var swipeDistance = 10;
var barrierSpeed = 280;
var barrierGap = 120;
var shipInvisibilityTime = 1000;
var barrierIncreaseSpeed = 1.1;
var scoreHeight = 100; 
var scoreSegments = [100, 50, 25, 10, 5, 2, 1];
var friendlyBarRatio = 10;
var localStorageName = "myrocketgame";

localStorageName variable stores the name of the local storage variable, so each 

time you will change myrocketgame with something else, you will reset your best 

score.

savedData will contain the information we want to save.

We are only saving the best score at the moment, but you can save anything you 

want: the number of games played, the total time spent playing the game, and so 

on.

Also, you aren't limited to saving one single value, you can also save arrays such 

as the best 10 scores.

It's up to you and your creativity.

Before entering the title screen we will check the local storage to see if we already

saved something and load it into savedData variable.

If nothing has been previously saved, because it's the first time the game is played 

or we just change localStorageName value, we set a default savedData content.

Let's add some lines to create method of titleScreen object:

85



Create HTML5 Vertical Endless Runner cross platform games

create: function(){  
     savedData = localStorage.getItem(localStorageName)==null?

{score:0}:JSON.parse(localStorage.getItem(localStorageName));
     var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
     titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
     var title = game.add.image(game.width / 2, 210, "title");
     title.anchor.set(0.5);
     game.add.bitmapText(game.width / 2, 480 , "font", "Best score", 48).anchor.x 

= 0.5;
     game.add.bitmapText(game.width / 2, 530 , "font", savedData.score.toString(),

72).anchor.x = 0.5;
     var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
     playButton.anchor.set(0.5);
     var tween = game.add.tween(playButton).to({
          width: 220,
          height:220
     }, 1500, "Linear", true, 0, -1); 
     tween.yoyo(true);
},
startGame: function(){
     game.state.start("PlayGame");     
}

The first line added is the very core of the concept. Let's see it:

savedData = localStorage.getItem(localStorageName)==null?
{score:0}:JSON.parse(localStorage.getItem(localStorageName));

No matter the experience programmers have, some of them never use or even did 

not know the conditional operator, also called ternary operator because it requires 

three operands.

A conditional operator, written as condition ? expr1 : expr2 will return 

the value of expr1 if condition is true, or the value of expr2 if condition is 

false. Think about it as a short if statement like if (condition) then expr1

else expr2.

If the local storage does not contain any information, we set savedData to an 

object with score set to zero.

localStorage.getItem(keyName) returns keyName's value.

If the local storage already contains information, we load them and parse from 

86



Create HTML5 Vertical Endless Runner cross platform games

JSON notation.

JSON.parse(text) converts text JSON string into a JavaScript object.

Why are we using JSON?

JSON (JavaScript Object Notation) is a lightweight data-interchange format used 

in cases where data serialization is needed.

It is easy for humans to read and write. It is easy for machines to parse and 

generate. It is an open standard format which is the one I prefer to transmit data 

objects consisting of attribute-value pairs.

Explaining JSON and its applications in everyday programming is beyond the 

scope of this book, but at the moment, for the purpose we have to use it, it's 

exactly what we are looking for.

No matter if there already was something previously stored in local storage, at the 

end of this line we have our best score in savedData.score so we can show it on 

the screen with the remaining new lines:

game.add.bitmapText(game.width / 2, 480 , "font", "Best score", 48).anchor.x 
= 0.5;

game.add.bitmapText(game.width / 2, 530 , "font", savedData.score.toString(), 
72).anchor.x = 0.5;

Since local storage information will be saved each time the game is over, 

hopefully to update the best score, we are going to load it again when we call 

create method in playGame object:

create: function(){
     score = 0;
     savedData = localStorage.getItem(localStorageName)==null?

{score:0}:JSON.parse(localStorage.getItem(localStorageName));
     // same as before       
}

And obviously create method of gameOverScreen object has the most changes, 

because we are showing the best score and also saving it to local storage: 

87



Create HTML5 Vertical Endless Runner cross platform games

create: function(){  
     var bestScore = Math.max(score, savedData.score);
     var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
     titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
     game.add.bitmapText(game.width / 2, 50 , "font", "Your score", 48).anchor.x =

0.5;
     game.add.bitmapText(game.width / 2, 150 , "font", score.toString(), 

72).anchor.x = 0.5;
     game.add.bitmapText(game.width / 2, 350 , "font", "Best score", 48).anchor.x 

= 0.5;
     game.add.bitmapText(game.width / 2, 450 , "font", bestScore.toString(), 

72).anchor.x = 0.5;
     localStorage.setItem(localStorageName,JSON.stringify({
          score: bestScore
     }));
     var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
     playButton.anchor.set(0.5);
     var tween = game.add.tween(playButton).to({
          width: 220,
          height:220
     }, 1500, "Linear", true, 0, -1); 
     tween.yoyo(true);
}

bestScore variable is used to get the best score between current score and 

savedData.score, then both scores are shown, finally the best score is saved in 

the local storage.

localStorage.setItem(keyName, keyValue) method adds keyName to the 

storage, or updates it to keyValue if it already exists.

In this case, JSON string is built starting from an object.

JSON.stringify(object) method converts object JavaScript object to a 

JSON string.

Now run the game, play and try to beat your best scores.

As you will see, the best score is shown both in the title and in the game over 

screen.

Close the game, close the browser, restart or turn off the device, then turn it on 

and launch the game again.

Your best score remains saved.

88



Create HTML5 Vertical Endless Runner cross platform games

Now your game offers some more challenge, just by saving the high score.

Adapting the game to various resolutions
The game works well at the moment, but since it's made for a 640x960 pixels 

resolution, it runs with an aspect ratio of 640/960 = 2/3.

This means you will see black bars around the game canvas if you run the game 

on a device or on a window which aspect ratio is not exactly 2/3.

Look at this picture: it shows the game running at 1024x768 and at 320x640.

Do you see the problem? In the 1024x768 window, with an aspect ratio greater 

than 2/3, we have vertical black bars, while in the 320x640, with an aspect ratio 

89



Create HTML5 Vertical Endless Runner cross platform games

smaller than 2/3, we have horizontal black bars.

These black bars are made by the black body background of the web page which 

is not entirely covered by the canvas running the game.

We have to prevent this to happen as we can't talk about “cross-platorm” until 

every aspect ratio is supported.

Obviously the game has been already developed so we won't change a single line 

of the game itself, we will just play on colors and proportions to give the player 

the feeling the game is covering the entire page, although it's a fake effect.

We will use two techniques to get rid of the black bars.

If we have to work with vertical bars, we'll just change body background color to 

match the tint color of the game.

If we have to work with horizontal bars, we have to create a taller game so that it 

will cover the entire available space, but game elements will perfectly adjust 

thanks to some choices we took during the creation of the game.

Let's start changing a bit window.onload function:

window.onload = function() {
     var width = 640;
     var height = 960;
     var windowRatio = window.innerWidth / window.innerHeight;
     if(windowRatio < width / height){
          var height = width / windowRatio;
     }
     game = new Phaser.Game(width, height, Phaser.AUTO, "");
     game.state.add("Boot", boot);
     game.state.add("Preload", preload); 
     game.state.add("TitleScreen", titleScreen);
     game.state.add("PlayGame", playGame);
     game.state.add("GameOverScreen", gameOverScreen);
     game.state.start("Boot");
}

These changes will handle horizontal bars, let's see them in detail:

var width = 640;
var height = 960;

90



Create HTML5 Vertical Endless Runner cross platform games

Rather than hardcoding game size, we are using two variables to store game width

and height.

var windowRatio = window.innerWidth / window.innerHeight;

We need to know the aspect ratio of the window the game is currently running in, 

and windowRatio contains this information.

innerWidth property returns the inner width of a window's content area.

innerHeight property returns the inner height of a window's content area.

Next thing we have to do is to check if windowRatio is smaller than our game 

ratio, causing horizontal bars to appear.

if(windowRatio < width / height){
     var height = width / windowRatio;
}

How can we prevent horizontal bars to appear? Simply extending the height of the

game as the actual game width we want divided by windowRatio.

This way we will get a taller game, but it won't be a problem because all game 

elements will be conveniently placed to the canvas in order to give the same 

gameplay experience no matter the height of the game.

game = new Phaser.Game(width, height, Phaser.AUTO, "");

Finally the game is created using width and height variables.

This will fix horizontal bars issue.

Vertical bars are even easier to fix as we only have to set the background color of 

the body of the HTML page where the game is running in to the same random tint 

color of the game.

This is the line we have to add to create method in titleScreen object:

91



Create HTML5 Vertical Endless Runner cross platform games

create: function(){  
     savedData = localStorage.getItem(localStorageName)==null?

{score:0}:JSON.parse(localStorage.getItem(localStorageName));
     var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
     titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
     document.body.style.background = "#"+titleBG.tint.toString(16);
     var title = game.add.image(game.width / 2, 210, "title");
     title.anchor.set(0.5);
     game.add.bitmapText(game.width / 2, 480 , "font", "Best score", 48).anchor.x 

= 0.5;
     game.add.bitmapText(game.width / 2, 530 , "font", savedData.score.toString(),

72).anchor.x = 0.5;
     var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
     playButton.anchor.set(0.5);
     var tween = game.add.tween(playButton).to({
          width: 220,
          height:220
     }, 1500, "Linear", true, 0, -1); 
     tween.yoyo(true);
}

This is how we change the background color outside the game.

document.body.style.background sets the style of the background of a 

document.

Since background color has to be set as hexadecimal string, we convert tint 

property of titleBG sprite to a hexadecimal value, starting the string with #. 

Don't worry as they are just operations on strings.

toString(radix) converts a number to a string with radix base to use for 

representing a numeric value. Must be an integer between 2 and 36.

Same thing applies to create method in playGame object:

create: function(){
     score = 0;
     savedData = localStorage.getItem(localStorageName)==null?

{score:0}:JSON.parse(localStorage.getItem(localStorageName));
     var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
     document.body.style.background = "#"+tintColor.toString(16);
     // same as before
}

And this works well in create method of gameOverScreen object too:

92



Create HTML5 Vertical Endless Runner cross platform games

create: function(){  
     bestScore = Math.max(score, savedData.score);
     var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
     titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
     document.body.style.background = "#"+titleBG.tint.toString(16);
     // same as before
}

Now test the game in a landscape window, and see how everything works well. 

Despite there still are vertical bars, giving them the same color of the game makes

them part of the game itself.

And what happens when we have a tall portrait?

Horizontal bars are gone since the height of the game has been increased to match 

93



Create HTML5 Vertical Endless Runner cross platform games

with the height of the window, and sensible elements such as play button and 

score are placed close to the bottom giving players the feeling the game was 

written with their devices in mind.

Other game actors, like the spaceship, maintain their absolute positioning, or the 

spaceship would have to travel a lot more before entering the scoring zone.

And with this couple of tricks, we made the game universal.

Adding sounds
To make the game more appealing, we are adding some sounds. You can add as 

many sounds as you want, but since it's just a repetitive task, in this game we are 

going to add only two sounds: a music loop to be played when the game starts, 

and an explosion sound effect to be played when the spaceship hits a barrier.

To keep game files organized, inside assets folder we need to create a new folder

called sounds, which will contain our sound files, this way:

As you can see I added two sounds, in two different formats: mp3 and ogg. As file 

names suggest, we have a background music and an explosion sound effect.

94



Create HTML5 Vertical Endless Runner cross platform games

Why did I use two sound formats? It's a compatibility matter: not all browsers are 

capable to reproduce all kind of sound files. Including both mp3 and ogg should 

grant the best device and browser coverage.

Preloading sounds is not different than preloading images, as you can see in 

preload method in Preload object:

preload: function(){ 
     var loadingBar = this.add.sprite(game.width / 2, game.height / 2, "loading");
     loadingBar.anchor.setTo(0.5);
     game.load.setPreloadSprite(loadingBar);
     game.load.image("title", "assets/sprites/title.png");
     game.load.image("playbutton", "assets/sprites/playbutton.png");
     game.load.image("backsplash", "assets/sprites/backsplash.png");
     game.load.image("tunnelbg", "assets/sprites/tunnelbg.png");
     game.load.image("wall", "assets/sprites/wall.png");
     game.load.image("ship", "assets/sprites/ship.png");
     game.load.image("smoke", "assets/sprites/smoke.png");
     game.load.image("barrier", "assets/sprites/barrier.png");
     game.load.image("separator", "assets/sprites/separator.png");
     game.load.bitmapFont("font", "assets/fonts/font.png", 

"assets/fonts/font.fnt");
     game.load.audio("bgmusic", ["assets/sounds/bgmusic.mp3", 

"assets/sounds/bgmusic.ogg"]);   
     game.load.audio("explosion", ["assets/sounds/explosion.mp3", 

"assets/sounds/explosion.ogg"]);
}  

We preload both sounds, then Phaser will choose which sound format to play 

according to browser capabilities.

load.audio(key, audioFiles) handles sound preloading. The first argument 

is the key, the second is an array of files to be loaded, in different formats. 

Once sounds have been preloaded, it's time to play them.

First, we are going to add the looping background music when the game begins, 

adding a couple of lines in create method of playGame object:

create: function(){
     this.bgMusic = game.add.audio("bgmusic");
     this.bgMusic.loopFull(1);
     // same as before        
}

There is a new bgMusic property which contains the audio related to background 

95



Create HTML5 Vertical Endless Runner cross platform games

music.

add.audio(key) adds a new audio file to the sound manager. key is the name 

we gave to the sound.

Once the audio file has been added to sound manager, loopFull method loops the

entire sound.

loopFull(volume) continuously loops a sound, playing it at volume volume, 

which ranges from zero to 100.

These two lines are all we need to loop a sound, but there's more we want for our 

game: once the spaceship hits a barrier, we want to stop looping background 

music and play once the explosion sound effect.

At the completion of destroyTween tween, when we create the particle explosion,

we will also stop music and play explosion sound:

destroyTween.onComplete.add(function(){
     this.bgMusic.stop();
     var explosionSound = game.add.audio("explosion");
     explosionSound.play();
     var explosionEmitter = game.add.emitter(this.ship.x, this.ship.y, 200);
     explosionEmitter.makeParticles("smoke");
     explosionEmitter.setAlpha(0.5, 1);
     explosionEmitter.minParticleScale = 0.5;
     explosionEmitter.maxParticleScale = 2;
     explosionEmitter.start(true, 2000, null, 200);
     this.ship.destroy();
     game.time.events.add(Phaser.Timer.SECOND * 2, function(){
          game.state.start("GameOverScreen");
     });
}, this);

First, we stop the background music.

stop() method stops playing the sound.

Then in the same way we added loop music, we add the explosion sound, and we 

play it.

play() method plays a sound.

Now run the project, start the game, hear the background music and once you hit a

96



Create HTML5 Vertical Endless Runner cross platform games

barrier, BOOM you're dead.

Resetting the game on restart
Although the game seems to be ready now, you probably noticed there is a new 

little bug.

I would call it “glitch” rather than “bug” because there's nothing wrong in the 

code, it's just that once you swipe to move back your ship, barriers speed increase 

and once you click on play button on the game over screen, barriers will start 

moving at the same speed they had in previous play.

In other words, barrier speed does not reset, and it quite obvious since we 

increased speed acting directly on barrierSpeed variable, changing its value and 

never setting it back to its default value.

Anyway, to fix this issue we only need two lines. The idea is to save default 

barrierSpeed value in a temporary variable and restore it once the game is over.

In create method of playGame object add this line to save barrierSpeed value 

in local saveBarrierSpeed property.

create: function(){    
     this.saveBarrierSpeed = barrierSpeed;
     // same as before
}

saveBarrierSpeed value will never change during the game.

Then, just before you launch GameOverScreen state, you can restore 

barrierSpeed value by setting it to saveBarrierSpeed.

game.time.events.add(Phaser.Timer.SECOND * 2, function(){
     barrierSpeed = this.saveBarrierSpeed;
     game.state.start("GameOverScreen");
}, this);

And finally you can restart the game with barriers running at default speed.

97



Create HTML5 Vertical Endless Runner cross platform games

Adding Keyboard controls
You managed to create a cross platform game, but there's still room for 

improvement to add different way to control the spaceship according to the device

you are playing the game on.

If we want desktop computer players to enjoy the game, we should add keyboard 

control to the game. This way you will allow players with a keyboard to control 

the game the way they prefer.

Phaser features various method to handle keyboard input, let's have a look at the 

changes we can make to make the player be able to control the spaceship with 

SPACEBAR to move from a side to another and SHIFT key to move the 

spaceship back down.

Change create method of  playGame object adding some new lines:

create: function(){    
     // same as before
     this.spacebar = game.input.keyboard.addKey(Phaser.Keyboard.SPACEBAR);
     this.spacebar.onDown.add(this.moveShip, this);  
     this.shift = game.input.keyboard.addKey(Phaser.Keyboard.SHIFT);
     this.shift.onDown.add(this.restartShip, this);     
}

Waiting for a key to be pressed isn't that different than waiting for a mouse or tap 

event. Let's see the new lines in detail:

this.spacebar = game.input.keyboard.addKey(Phaser.Keyboard.SPACEBAR);

A property called spacebar is assigned to actual SPACEBAR key.

input.keyboard.addKey(keycode) add callbacks to the keyboard handler so 

that each time the key with keycode code is pressed down or released the 

callbacks are activated.

At this time, the key can be handled like an input in the same way we saw when 

we dealt with mouse and tap events.

98



Create HTML5 Vertical Endless Runner cross platform games

 this.spacebar.onDown.add(this.moveShip, this);  

See it? It's the same add method explained before, with its two arguments telling 

us which function to call in which context.

So in the end we wait for SPACEBAR key and we call moveShip method in the 

same way we called it when the player was clicking or tapping on the screen.

The same concepts applies to SHIFT key which calls restartShip method.

Basically now pressing SPACEBAR is equal to clicking or tapping the screen, 

while pressing SHIFT key is equal to swiping.

You may think we are already done with keyboard control, but there's one more 

thing to do as at this time we can have input conflicts.

We know swipes are processed only if canSwipe property is set to true, and such 

property is set to true when moveShip method is called.

What happens if the player presses SPACEBAR calling moveShip method and 

setting canSwipe to true then accidentally moves the mouse? Being canSwipe 

set to true, the movement would be seen as a swipe and this would be an error.

We have to check for swipes only if moveShip method is called after a click or tap

event. If it's called after a keyboard event, we don't need canSwipe property as we

already have a dedicated key – SHIFT – to make the ship move back down.

So the question is: how do we check if moveShip has been called after a keyboard 

event? Look how I changed moveShip method:

moveShip: function(e){
     var isKeyboard = e instanceof Phaser.Key;
     if(!isKeyboard){
          this.ship.canSwipe = true;   
     }       
     if(this.ship.canMove && !this.ship.destroyed){
          // same as before
     }          
}

99



Create HTML5 Vertical Endless Runner cross platform games

The first thing I want you to notice is the e argument in moveShip method.

Phaser always passes the event itself in the callback function, so inside e object 

we can find a lot of useful information about the event which called the callback.

object instanceof  constructor operator allows to check if object is 

created by constructor.

What we need to do is to see if the event has been created by a key. At this time 

we set canSwipe property to true only if e was not created by a keyboard event.

This way we can prevent player to make unwanted swipes.

Now test the game and try to play with keyboard. Remember: SPACESHIP to 

change side and SHIFT to move the ship down.

The game itself is quite easy to play, but more complex games may require an 

extra screen where you explain players how to play.

Adding “how to play” state
We are about to add a new state, in our window.onload function:

window.onload = function() {
     var width = 640;
     var height = 960;
     var windowRatio = window.innerWidth / window.innerHeight;
     if(windowRatio < width / height){
          var height = width / windowRatio;
     }
     game = new Phaser.Game(width, height, Phaser.AUTO, "");
     game.state.add("Boot", boot);
     game.state.add("Preload", preload); 
     game.state.add("TitleScreen", titleScreen);
     game.state.add("HowToPlay", howToPlay);
     game.state.add("PlayGame", playGame);
     game.state.add("GameOverScreen", gameOverScreen);
     game.state.start("Boot");
}

This was easy, as we just told the game there's a new state. Another easy step is to 

tell the game when to call HowToPlay state.

The most obvious thing to do is to call it when the player clicks/taps the play 

100



Create HTML5 Vertical Endless Runner cross platform games

button on the title screen.

We'll change the state we call in startGame method of titleScreen object:

startGame: function(){          
     game.state.start("HowToPlay");                 
}

Ok, now the funny part: we have to create the state itself: look at the source code 

we are going to add:

var howToPlay = function(game){};
howToPlay.prototype = {  
     create: function(){  
          var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
          titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
          document.body.style.background = "#"+titleBG.tint.toString(16);
          game.add.bitmapText(game.width / 2, 120 , "font", "Move left / right", 

60).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 200 , "font", "Tap, Click or 

SPACEBAR key", 36).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 400 , "font", "Move to the bottom", 

60).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 480 , "font", "Swipe, Drag or SHIFT 

key", 36).anchor.x = 0.5;
          var horizontalShip = game.add.sprite(game.width / 2 - 50, 260, "ship");
          horizontalShip.anchor.set(0.5);
          horizontalShip.scale.set(0.5);
          var horizontalShipTween = game.add.tween(horizontalShip).to({
               x: game.width / 2 + 50
          }, 500, "Linear", true, 0, -1); 
          horizontalShipTween.yoyo(true); 
          var verticalShip = game.add.sprite(game.width / 2, 540, "ship");
          verticalShip.anchor.set(0.5);
          verticalShip.scale.set(0.5);
          var verticalShipTween = game.add.tween(verticalShip).to({
               y: 640
          }, 500, "Linear", true, 0, -1);  
          var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
          playButton.anchor.set(0.5);
          var tween = game.add.tween(playButton).to({
               width: 220,
               height:220
          }, 1500, "Linear", true, 0, -1); 
          tween.yoyo(true);     
     },
     startGame: function(){
          game.state.start("PlayGame");            
     }
}

101



Create HTML5 Vertical Endless Runner cross platform games

It may seem a lot of stuff but there isn't anything new as it's just made by some 

bitmap texts, a couple of tweens and a button.

Runt he game at this time, and once you click/tap on the play button in the title 

screen, that's what you'll see:

Here it is the “how to play” screen, with moving spaceships and the “play” button 

which is the same we used in game title.

Everything is nicely explained and once the player presses the button, the game 

begins.

Let's break the code into pieces:

var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 
"backsplash");

titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
document.body.style.background = "#"+titleBG.tint.toString(16);

102



Create HTML5 Vertical Endless Runner cross platform games

This is the same old way we use to generate the random background color.

game.add.bitmapText(game.width / 2, 120 , "font", "Move left / right", 
60).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 200 , "font", "Tap, Click or 
SPACEBAR key", 36).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 400 , "font", "Move to the bottom", 
60).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 480 , "font", "Swipe, Drag or SHIFT 
key", 36).anchor.x = 0.5;

We have four bitmap texts here: they represent the instructions themselves and as 

you can see there's nothing new in them.

Now the idea is to place two spaceship sprites, one which moves from left to right 

and from right to left – that is with a yoyo effect – and one which moves from top 

to bottom without yoyo effect.

This is the horizontal yoyo tween:

var horizontalShip = game.add.sprite(game.width / 2 - 50, 260, "ship");
horizontalShip.anchor.set(0.5);
horizontalShip.scale.set(0.5);
var horizontalShipTween = game.add.tween(horizontalShip).to({
     x: game.width / 2 + 50
}, 500, "Linear", true, 0, -1); 
horizontalShipTween.yoyo(true); 

And this is the vertical tween:

var verticalShip = game.add.sprite(game.width / 2, 540, "ship");
verticalShip.anchor.set(0.5);
verticalShip.scale.set(0.5);
var verticalShipTween = game.add.tween(verticalShip).to({
     y: 640
}, 500, "Linear", true, 0, -1);  

There isn't that much to say about these lines, because you already know how to 

create tweens. 

This is the good side of learning a programming language: the more code you 

write, the most often you will find yourself reusing the code you have already 

written, speeding up the development.

103



Create HTML5 Vertical Endless Runner cross platform games

Talking about reusing the code, the play button is nothing more than a copy/paste 

of the same code used in title screen:

var playButton = game.add.button(game.width / 2, game.height - 150, 
"playbutton", this.startGame);

playButton.anchor.set(0.5);
var tween = game.add.tween(playButton).to({
     width: 220,
     height:220
}, 1500, "Linear", true, 0, -1); 
tween.yoyo(true);  

And finally, startGame callback method launches the game itself:

startGame: function(){
     game.state.start("PlayGame");            
}

And now your game has a new state explaining how to play.

Now that your first endless vertical runner game has been completed, it will be 

easier to create different games using similar gameplay.

Making your next game
The game we are about to create now is heavily based on 2 Cars by Ketchapp 

Studio (https://itunes.apple.com/en/app/2-cars/id936839198?mt=8).

104

https://itunes.apple.com/en/app/2-cars/id936839198?mt=8


Create HTML5 Vertical Endless Runner cross platform games

This game has also been featured on the Apple app store and it's free so I suggest 

you to install it on your mobile phone and play it a bit, so you will have an idea 

about the game you are about to create.

You will see how faster we will proceed during the creation of this game, since we

already know all core concepts.

Project folder structure will remain the same, with assets, fonts, sprites and 

sounds folders.

We'll keep the same background music, create a new bitmap font with Littera and 

this will be the content of our sprites folder:

Green background actually will be transparent, I've set it to green to let you see 

more clearly the transparency of each image.

Everything has been drawn in shades of gray, as we'll tint it later in the game.

105



Create HTML5 Vertical Endless Runner cross platform games

The starting template we will be working on is this one, saved in game.js:

var game;

window.onload = function() {
     var width = 640;
     var height = 960;
     var windowRatio = window.innerWidth / window.innerHeight;
     if(windowRatio < width / height){
          var height = width / windowRatio;
     }
     game = new Phaser.Game(width, height, Phaser.AUTO, "");
     game.state.add("Boot", boot);
     game.state.add("Preload", preload); 
     game.state.add("TitleScreen", titleScreen);
     game.state.add("HowToPlay", howToPlay);
     game.state.add("PlayGame", playGame);
     game.state.add("GameOverScreen", gameOverScreen);
     game.state.start("Boot");
}

var boot = function(game){};
boot.prototype = {
     create: function(){
     }     
}

var preload = function(game){};
preload.prototype = {
     create: function(){
     } 
}

var titleScreen = function(game){};
titleScreen.prototype = { 
     create: function(){
     }  
}

var howToPlay = function(game){};
howToPlay.prototype = {
     create: function(){
     }   
}

var playGame = function(game){};
playGame.prototype = {
     create: function(){
     }   
}

var gameOverScreen = function(game){};
gameOverScreen.prototype = {
     create: function(){
     } 
}

I just created game variable, made a game with a basic 640x960 resolution which 

106



Create HTML5 Vertical Endless Runner cross platform games

adapts to different heights and set all the states we saw during the making of the 

previous game.

Now we will build the new game starting from this structure.

Creating boot state
Boot state remains exactly the same as before, preloading the loading bar and 

scaling the game to cover the entire screen:

var boot = function(game){};
boot.prototype = {
     preload: function(){
          game.load.image("loading","assets/sprites/loading.png"); 
     },
     create: function(){
          game.scale.pageAlignHorizontally = true;
          game.scale.pageAlignVertically = true;
          game.scale.scaleMode = Phaser.ScaleManager.SHOW_ALL;
          game.state.start("Preload");
     }      
}

Then Preload state is launched.

If you test the project now, you won't see anything because actually nothing 

happens so don't worry if you see a black page.

Your previous game started with a black page too and you eventually came up 

with Rising Ships game.

A nice way to start adding content to your game is loading assets.

Creating preload state
Preloading assets will be basically the same process in all games you will develop 

with Phaser.

Once you setup the loading bar preloaded in boot state, it's just a matter of loading

all sprites, texts and fonts you will need in the game.

I already showed you the graphics we are going to use. As for the sounds we have 

a background music, an explosion sound to be played when a car crashes or 

107



Create HTML5 Vertical Endless Runner cross platform games

misses a target, and a hit sound to be played when a car collects a target.

var preload = function(game){};
preload.prototype = {
     preload: function(){ 
          var loadingBar = this.add.sprite(game.width / 2, game.height / 2, 

"loading");
          loadingBar.anchor.setTo(0.5);
          game.load.setPreloadSprite(loadingBar);
          game.load.image("title", "assets/sprites/title.png");
          game.load.image("playbutton", "assets/sprites/playbutton.png");
          game.load.image("backsplash", "assets/sprites/backsplash.png");
          game.load.image("target", "assets/sprites/target.png");
          game.load.image("car", "assets/sprites/car.png");
          game.load.image("particle", "assets/sprites/particle.png");
          game.load.bitmapFont("font", "assets/fonts/font.png", 

"assets/fonts/font.fnt");
          game.load.audio("bgmusic", ["assets/sounds/bgmusic.mp3", 

"assets/sounds/bgmusic.ogg"]);   
          game.load.audio("explosion", ["assets/sounds/explosion.mp3", 

"assets/sounds/explosion.ogg"]);  
          game.load.audio("hit", ["assets/sounds/hit.mp3", 

"assets/sounds/hit.ogg"]);     
     },
     create: function(){
          game.state.start("TitleScreen");
     }
}

Then we call the state which will display the title screen.

Creating title screen
Finally we are ready to put some content in the game.

The idea is to create the same title screen we made for Rising Ships, with a 

random background color, a tiled background image, the game title, an animated 

play button and the best score printed with bitmap fonts.

We need a couple of new global variables:

var game;
var localStorageName = "doublelanegame";
var bgColors = [0x54c7fc, 0xffcd00, 0xff2851, 0x62bd18];

Like in previous game, localStorageName contains the name of the local storage 

variable.

108



Create HTML5 Vertical Endless Runner cross platform games

Keep in mind you have to use a different name for each game you make, or high 

scores will overwrite each other.

bgColors is an array of color codes we will randomly pick as background.

And this is the content of the final titleScreen object:

var titleScreen = function(game){};
titleScreen.prototype = {  
     create: function(){  
          savedData = localStorage.getItem(localStorageName)==null?

{score:0}:JSON.parse(localStorage.getItem(localStorageName)); 
          var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
          titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
          document.body.style.background = "#" + titleBG.tint.toString(16);
          var title = game.add.image(game.width / 2, 160, "title");
          title.anchor.set(0.5);
          game.add.bitmapText(game.width / 2, 400, "font", "Best score", 

90).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 500, "font", 

savedData.score.toString(), 120).anchor.x = 0.5;
          var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
          playButton.anchor.set(0.5);
          var tween = game.add.tween(playButton).to({
               width: 220,
               height: 220
          }, 1500, "Linear", true, 0, -1); 
          tween.yoyo(true);
     },
     startGame: function(){          
          game.state.start("PlayGame");                 
     }
}

There's nothing new in this code, so you can imagine the result:

109



Create HTML5 Vertical Endless Runner cross platform games

We have our title screen filled with a random color, the glowing “play” button and

the best score taken directly from local storage.

It's always nice when you can create a simple but effective title screen with only a 

few lines, but now it's time to start making the game itself.

Creating the road
The game takes place on a road. This is the first thing we are going to add to the 

game, as well as the background music as we already know how to add sounds to 

the game.

We'll add some new global variables first:

var game;
var localStorageName = "doublelanegame";
var bgColors = [0x54c7fc, 0xffcd00, 0xff2851, 0x62bd18];
var score;
var savedData;
var laneWidth = 138;
var lineWidth = 4;

score and savedData have the same meaning already been explained during the 

making of the previous game, so we have only two brand new variables: 

laneWidth and lineWidth.

laneWidth represents the width, in pixels, of each lane. Remember the game 

features two roads, and each road is has two lanes – it's called Double Lane – so 

choose wisely the width of each lane.

lineWidth stores the width, in pixels of the line which separates the two lanes of 

each road. You can see the values I am using in the game, but you are free to play 

with these numbers and the game will react accordingly.

Since we are starting to create the game itself, we are going to write code in 

playGame object.

You are about to see a lot of code, but don't worry as at this point you will find it 

ridiculously easy to understand.

110



Create HTML5 Vertical Endless Runner cross platform games

var playGame = function(game){};
playGame.prototype = {  
     create: function(){    
          this.bgMusic = game.add.audio("bgmusic");
          this.bgMusic.loopFull(1); 
          score = 0;
          savedData = localStorage.getItem(localStorageName)==null?

{score:0}:JSON.parse(localStorage.getItem(localStorageName));
          var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
          document.body.style.background = "#"+tintColor.toString(16);
          var pickedColors = [tintColor];
          this.roadWidth = laneWidth * 2 + lineWidth;
          var roadSeparator = game.add.tileSprite(this.roadWidth, 0, game.width - 

(this.roadWidth * 2), game.height, "particle");
          roadSeparator.tint = tintColor;
          var leftLine = game.add.tileSprite(laneWidth, 0, lineWidth, game.height,

"particle");
          leftLine.tint = tintColor;
          var rightLine = game.add.tileSprite(game.width - laneWidth - lineWidth, 

0, lineWidth, game.height, "particle");
          rightLine.tint = tintColor;
          this.carGroup = game.add.group();
          this.targetGroup = game.add.group();
          this.scoreText = game.add.bitmapText(game.width / 2, 40 , "font", "0", 

120)
          this.scoreText.anchor.x = 0.5;
     }
}

Let's see what we are going to do line by line:

this.bgMusic = game.add.audio("bgmusic");
this.bgMusic.loopFull(1); 

We start looping the background music.

savedData = localStorage.getItem(localStorageName)==null?
{score:0}:JSON.parse(localStorage.getItem(localStorageName));

Now we update savedData content, using the local storage.

var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
document.body.style.background = "#"+tintColor.toString(16);
var pickedColors = [tintColor];

And here is how we assign a random tint color, also using it for the background. 

The first new thing which differs from the making of Rising Ships is 

111



Create HTML5 Vertical Endless Runner cross platform games

pickedColors variable.

We want to store in an array the random color we just used for the background, 

because we will use more random colors later in the game and we don't want to 

use the same random color we already used for the background.

this.roadWidth = laneWidth * 2 + lineWidth;

roadWidth property stores the actual width of the road, in pixels, which is due by 

the sum of both lanes plus the separation line. With the values I used in this 

example, it will be 138 * 2 + 4 = 280 pixels.

var roadSeparator = game.add.tileSprite(this.roadWidth, 0, game.width - 
(this.roadWidth * 2), game.height, "particle");

roadSeparator.tint = tintColor;

roadSeparator is a tile sprite which fills the gap between the two roads, each one

made by two lanes and a separation line.

var leftLine = game.add.tileSprite(laneWidth, 0, lineWidth, game.height, 
"particle");

leftLine.tint = tintColor;

leftLine is the separation line between the two lanes in left road.

var rightLine = game.add.tileSprite(game.width - laneWidth - lineWidth, 
0, lineWidth, game.height, "particle");

rightLine.tint = tintColor;

rightLine is the separation line between the two lanes in right road.

I want you to see how I am tinting all these sprites with tintColor and how I am 

using as tile particle image which is a little white square.

We are also preparing the game to host the cars and the targets, adding two 

groups, one for the cars and one for the targets, and last but not least we add the 

bitmap text which will show the current score, which is zero at the moment.

112



Create HTML5 Vertical Endless Runner cross platform games

this.carGroup = game.add.group();
this.targetGroup = game.add.group();
this.scoreText = game.add.bitmapText(game.width / 2, 40 , "font", "0", 120)
this.scoreText.anchor.x = 0.5;

Now run the game and play with laneWidth and lineWidth values to create the 

kind of road which fits your needs. The entire gameplay will react accordingly.

Now it's time to add the cars.

Adding the cars
The game features two cars, so we need a variable to store them. cars array will 

have two items, the cars themselves.

var game;
var localStorageName = "doublelanegame";
var bgColors = [0x54c7fc, 0xffcd00, 0xff2851, 0x62bd18];
var score;
var savedData;
var laneWidth = 138;
var lineWidth = 4;
var cars = [];

To add the cars to the game, we need to write some more lines to create method 

in playGame object.

At this time we won't be able to control the cars but we'll add a particle effect to 

113



Create HTML5 Vertical Endless Runner cross platform games

their tails to simulate the exhaust.

Let's add these lines to create method:

create: function(){    
     // same as before
     for(var i = 0; i < 2; i++){
          cars[i] = game.add.sprite(0, game.height - 120, "car");
          cars[i].positions = [(game.width + roadSeparator.width) / 2 * i  + 

laneWidth / 2, (game.width + roadSeparator.width) / 2 * i + 
laneWidth + lineWidth + laneWidth / 2];

          cars[i].anchor.set(0.5);
          do{    
               tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
          } while (pickedColors.indexOf(tintColor) >= 0)
          cars[i].tint = tintColor;  
          pickedColors.push(tintColor);
          cars[i].canMove = true;
          cars[i].side = i;
          cars[i].x = cars[i].positions[cars[i].side];
          game.physics.enable(cars[i], Phaser.Physics.ARCADE); 
          cars[i].body.allowRotation = false;
          cars[i].body.moves = false;  
          cars[i].smokeEmitter = game.add.emitter(cars[i].x, cars[i].y + 

cars[i].height / 2 + 2, 20);
          cars[i].smokeEmitter.makeParticles("particle");
          cars[i].smokeEmitter.setXSpeed(-15, 15);
          cars[i].smokeEmitter.setYSpeed(50, 150);
          cars[i].smokeEmitter.setAlpha(0.2, 0.5);
          cars[i].smokeEmitter.start(false, 500, 20);
          cars[i].smokeEmitter.forEach(function(p){
               p.tint = cars[i].tint;
          });
          this.carGroup.add(cars[i]);
     }
}

And let's jump straight to what you are going to see on your screen:

You can see random colored cars with their particle trails, and if you look closer, 

you will also see cars will never be the same color of the road.

Remember pickedColors array we used before? Now it will come into play.

114



Create HTML5 Vertical Endless Runner cross platform games

Let me show you what happened, line by line:

for(var i = 0; i < 2; i++){
     // rest of the script
}

We said we have two cars, so we need a loop which iterates two times, with index 

0 for the first car – on the left – and 1 for the second car, on the right.

cars[i] = game.add.sprite(0, game.height - 120, "car");

cars[i] now contains the sprite of the i-th car, which is added to the stage. Its 

horizontal position is zero because we still have to decide where to place it, while 

game.height – 120 will be its vertical, final position. Remember in vertical 

endless runners player never moves vertically, it's the whole environment to scroll

towards the player.

cars[i].positions = [(game.width + roadSeparator.width) / 2 * i  + laneWidth / 2, 
(game.width + roadSeparator.width) / 2 * i + laneWidth + lineWidth + 
laneWidth / 2];

cars[i].anchor.set(0.5);

Cars can only move from one lane to another, just like the spaceship in Rising 

Ships, so for each car we have to store somewhere its two possible positions.

position attribute is an array with two elements: the first is the horizontal 

position when the car is on the left lane, and the second is the horizontal position 

when the car is on the right lane. It may seem a long formula but it's meant to 

work with any laneWidth and lineWidth value.

Let me show you what you'll get from this formula:

Left car, left position: laneWidth / 2.

Left car, right position: laneWidth * 1.5 + lineWidth.

Right car, left position: left position of left car + game width / 2 + roadSeparator

width / 2.

115



Create HTML5 Vertical Endless Runner cross platform games

Right car, right position: right position of left car  + game width / 2 + 

roadSeparator width / 2. 

Finally we set the anchor point of the car to its center.

do{    
     tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
} while (pickedColors.indexOf(tintColor) >= 0)
cars[i].tint = tintColor;  
pickedColors.push(tintColor);

Here is when pickedColors array comes into play. We want background, left car 

and right cars colors to be randomly picked but never to be the same.

In the do while loop we keep choosing random colors until it's not a color we 

already picked. How can we know we already picked a color? Because it's inside 

pickedColors array.

The do while statement creates a loop that executes a block of code once, 

before checking if the condition is true, then it will repeat the loop as long as 

the condition is true. Use it when you want to run a loop at least one time.

Now we need to create a couple of custom properties to see if cars can change 

lane and which lane are they running in, just like we made with the spaceship in 

Rising Ships.

cars[i].canMove = true;
cars[i].side = i;
cars[i].x = cars[i].positions[cars[i].side];

canMove is true if the car can change lane, false otherwise.

side property is zero if the car is on the left lane, 1 if it's on the right line.

You can see left car is starting on the left lane while right car is starting on the 

right lane.

Finally x property of the car is set to its actual value, placing the car in the proper 

horizontal coordinate.

116



Create HTML5 Vertical Endless Runner cross platform games

game.physics.enable(cars[i], Phaser.Physics.ARCADE); 
cars[i].body.allowRotation = false;
cars[i].body.moves = false;

We will be using ARCADE physics in this game to check for collisions and 

handle environment speed just like we made with Rising Ships, so cars are 

enabled but we don't want physics to move or rotate them, that's why 

allowRotation and moves properties are set to false.

allowRotation property of a body allows the body to be rotated.

moves property of a body when set to true allows the physics system to move 

the body, when set to false does not let physics to move the body, which must 

be moved manually.

You may wonder why we are setting these properties in this game when Rising 

Ships worked perfectly without setting them. I have to say, the game can work 

with or without setting allowRotation and moves, but I want cars to stop exactly 

where they are in case of collision, and this is not possible if you don't set these 

properties as colliding cars would bounce or move somehow. You can test it by 

yourself once you finish to make the game.

cars[i].smokeEmitter = game.add.emitter(cars[i].x, cars[i].y + cars[i].height / 2 
+ 2, 20);

cars[i].smokeEmitter.makeParticles("particle");
cars[i].smokeEmitter.setXSpeed(-15, 15);
cars[i].smokeEmitter.setYSpeed(50, 150);
cars[i].smokeEmitter.setAlpha(0.2, 0.5);
cars[i].smokeEmitter.start(false, 500, 20);

With both cars placed on the stage and their physics bodies ready to check for 

collisions, we only have to create the emitters which will create a particle effect 

simulating the exhaust system. It's basically the same emitter with the same 

settings as the one created for the smoke trail in Rising Ships game.

But there's something more to do: particle image is white, while we want particles

to have the same color as the cars. We can't tint an emitter, so we have to tint each 

particle, one by one.

117



Create HTML5 Vertical Endless Runner cross platform games

cars[i].smokeEmitter.forEach(function(p){
     p.tint = cars[i].tint;
});

This is how we loop through all particles and apply them the same tint color 

applied to the car.

emitter.forEach(callback, context) calls callback function on each 

particle in the emitter with context context.

And the last thing to do is to add cars to carGroup group.

this.carGroup.add(cars[i]);

With both cars on the stage, now it's time to let the player control them.

Controlling the cars
Player will control cars making them change lane by tapping on the screen.

A tap on the left half of the screen will make left car change lane, and a tap on the 

right half of the screen will make right car change lane.

The first thing we need to do is the creation of a new global variable storing the 

amount of milliseconds needed for the car to change lane.

var game;
var localStorageName = "doublelanegame";
var bgColors = [0x54c7fc, 0xffcd00, 0xff2851, 0x62bd18];
var score;
var savedData;
var laneWidth = 138;
var lineWidth = 4;
var cars = [];
var carTurnSpeed = 200;

I set carTurnSpeed to 200 but you are free to use the value you prefer, according 

to the gameplay you have in mind.

Just like Rising Ships, we need to wait for the player to tap or click the screen, so 

118



Create HTML5 Vertical Endless Runner cross platform games

let's add the listener to create method in playGame object:

create: function(){    
     // same as before
     game.input.onDown.add(this.moveCar, this);
}

Now once the player interacts with the game, moveCar method is called.

We are moving cars in the same way we moved the spaceship in previous game, 

but this time we'll add a couple of features, because we need to know which car 

we are going to move and we want to add a steering effect.

Look at moveCar method, to be created inside playGame object:

moveCar: function(e){  
     var carToMove = Math.floor(e.position.x / (game.width / 2));
     if(cars[carToMove].canMove){
          cars[carToMove].canMove = false;
          var steerTween = game.add.tween(cars[carToMove]).to({
               angle: 20 - 40 * cars[carToMove].side
          }, carTurnSpeed / 2, Phaser.Easing.Linear.None, true);
          steerTween.onComplete.add(function(){
               var steerTween = game.add.tween(cars[carToMove]).to({
                    angle: 0
               }, carTurnSpeed / 2, Phaser.Easing.Linear.None, true);
          })
          cars[carToMove].side = 1 - cars[carToMove].side;
          var moveTween = game.add.tween(cars[carToMove]).to({ 
               x: cars[carToMove].positions[cars[carToMove].side],
          }, carTurnSpeed, Phaser.Easing.Linear.None, true);
          moveTween.onComplete.add(function(){
               cars[carToMove].canMove = true;
          })
     }
}

Let's give a closer look at what happens in this method.

var carToMove = Math.floor(e.position.x / (game.width / 2));

At each player input, we need to know which car we have to move.

We said touching the left half of the game will move the left car and touching the 

right half of the game we will move the right car so we have to know the 

119



Create HTML5 Vertical Endless Runner cross platform games

coordinates of each input.

position property of an input event returns a point with the coordinates of the 

input. position.x and position.y return respectively the horizontal and 

vertical coordinates of the input.

Do some math, and you will see carToMove will be zero if the player touches the 

left half of the game, and 1 if the player touches the right half of the game.

Since cars[0] is the left car and cars[1] is the right car, we can say 

cars[carToMove] is the car we need to move now.

if(cars[carToMove].canMove){
     // rest of the code
}

Before we move a car, we need to check if it can move, looking at canMove 

property.

cars[carToMove].canMove = false;

If you execute this line, it means the car can move and we are about to move it. 

Let's set canMove property to false now because we don't want the player to be 

able to move a car which is already moving.

var steerTween = game.add.tween(cars[carToMove]).to({
     angle: 20 - 40 * cars[carToMove].side
}, carTurnSpeed / 2, Phaser.Easing.Linear.None, true);

Here we go with a tween to simulate the steering. You already know how tweens 

work since you used them to change the position and the size of sprites. This time 

you will change the angle, setting to 20 if we are on left lane – check side 

property – or -20 if we are on the right lane.

angle property of a sprite is the rotation in degrees from its original orientation. 

Values from 0 to 180 represent clockwise rotation. Values from 0 to -180 

represent counterclockwise rotation.

120



Create HTML5 Vertical Endless Runner cross platform games

As you can see, the tween lasts only carTurnSpeed / 2 milliseconds, which is 

half of the time allowed to cars to change lane.

We will use the second half of the time to set car angle to zero again and complete

the steering effect.

steerTween.onComplete.add(function(){
     var steerTween = game.add.tween(cars[carToMove]).to({
          angle: 0
     }, carTurnSpeed / 2, Phaser.Easing.Linear.None, true);
})

Another thing to do is changing side property switching it from zero to one or 

from one to zero.

cars[carToMove].side = 1 - cars[carToMove].side;

At this time we only changed the angle of the car but the position is still the same, 

so here is the tween to change x position, this time taking the whole 

carTurnSpeed amount of milliseconds.

var moveTween = game.add.tween(cars[carToMove]).to({ 
     x: cars[carToMove].positions[cars[carToMove].side],
}, carTurnSpeed, Phaser.Easing.Linear.None, true);

And finally we can update canMove property once moveTween has been 

completed:

moveTween.onComplete.add(function(){
     cars[carToMove].canMove = true;
})

Cars will be able to move now, but the emitters which simulate the exhaust don't, 

so we need to manually update their position.

This is where update method of playGame object must come into play. 

Remember update method is executed at each frame, so at each frame we will 

121



Create HTML5 Vertical Endless Runner cross platform games

update smoke emitters position:

update: function(e){
     cars[0].smokeEmitter.x = cars[0].x;
     cars[1].smokeEmitter.x = cars[1].x;
}

Launch the game, and control cars by tapping on the left or on the right side of the

game. Watch the cars steering as they change lane.

We are done with touch/click input but the true spirit of cross platform 

development wants us to let the player to control cars also with keyboard if 

needed.

Controlling the cars with keyboard
Players will be able to control the game with two keys: Z to make left car change 

its lane, and X to make right car change its lane.

We have to add four more lines to create method, to set the listeners:

create: function(){
     // same as before
     this.leftKey = game.input.keyboard.addKey(Phaser.Keyboard.Z);
     this.leftKey.onDown.add(this.moveCar, this);  
     this.rightKey = game.input.keyboard.addKey(Phaser.Keyboard.X);
     this.rightKey.onDown.add(this.moveCar, this);  
}

Now both Z and X keys once pressed will call moveCar method, which is the 

same method called when we received a touch/click input.

Following the same concept seen in the creation of Rising Ships, we will work on 

122



Create HTML5 Vertical Endless Runner cross platform games

e event passed as argument to see if we are dealing with a keyboard or an input 

event. If we have a keyboard event, we check which key fired the event and move 

the proper car accordingly.

These are the new lines to add to moveCar method to make it compatible with 

keyboard events.

moveCar: function(e){  
     var carToMove;      
     var isKeyboard = e instanceof Phaser.Key;
     if(isKeyboard){
          if(e.keyCode == 88){
               carToMove = 1;
          }
          else{
               carToMove = 0;     
          }
     }
     else{
          carToMove = Math.floor(e.position.x / (game.width / 2));
     }
     if(cars[carToMove].canMove){
          // same as before
     }
}

If you test the game now, you will also be able to change cars lanes with Z and X 

keys.

keyCode property returns the key code of a Phaser.Key object.

Finally we completed the part of the game which controls cars movement. It's 

time to add the other actors of this game: the targets to collect or avoid.

Adding targets
Let's spend a minute talking about targets: they appear from the top of the screen 

at a given interval and move at a given speed towards the bottom of the screen 

where they disappear.

Each target has a color, randomly chosen among cars colors, and each car must 

collect all targets with the same color and avoid all targets with the other color.

Collecting a target with a different color means game over. Not collecting a target 

123



Create HTML5 Vertical Endless Runner cross platform games

with the same color means game over.

The first thing we have to do is to define the delay between a target and next one, 

and the speed targets move from the top to the bottom of the game.

This means two new global variables to add:

var game;
var localStorageName = "doublelanegame";
var bgColors = [0x54c7fc, 0xffcd00, 0xff2851, 0x62bd18];
var score;
var savedData;
var laneWidth = 138;
var lineWidth = 4;
var cars = [];
var carTurnSpeed = 200;
var targetDelay = 1200;
var targetSpeed = 180;

targetDelay is the amount of time in milliseconds between the creation of a 

target and the creation of next target. targetSpeed is the speed of the target, in 

pixels per second.

The time loop which will create targets will be placed in create method of 

playGame object, at the end of the script:

create: function(){    
     // same as before
     this.targetLoop = game.time.events.loop(targetDelay, function(){
          for(var i = 0; i < 2; i++){                    
               var target = new Target(game, i);
               game.add.existing(target);
               this.targetGroup.add(target);
          }
     }, this);
}

As you can see, we add two targets each time: one on the left road and one on the 

right road.

Targets are instances of Target class, it's exactly the same concept I explained 

during the creation of the barriers during Rising Ships development.

So we just have to create Target class, which constructor has two arguments: the 

124



Create HTML5 Vertical Endless Runner cross platform games

game itself and the lane where to place the target.

Target = function (game, lane) {     
     var position = game.rnd.between(0, 1);
     Phaser.Sprite.call(this, game, cars[lane].positions[position], -20, 

"target");
     game.physics.enable(this, Phaser.Physics.ARCADE);
     this.anchor.set(0.5);
     var tint = game.rnd.between(0, 1);
     this.mustPickUp = tint == lane;
     this.tint = cars[tint].tint;
     this.body.velocity.y = targetSpeed;
};
 
Target.prototype = Object.create(Phaser.Sprite.prototype);
Target.prototype.constructor = Target;
 
Target.prototype.update = function() {
     if(this.y > game.height + this.height / 2){
          this.destroy();
     }
};

Although it's almost the same snippet of code used during the creation of barriers 

in Rising Ships, there are a couple of new lines I want to show in detail:

var position = game.rnd.between(0, 1);

position variable contains a number which can be 0 – target placed on the left 

lane – or 1 – target placed on the right lane.

var tint = game.rnd.between(0, 1);

tint also takes a number which can be 0 – same tint color as left car – or 1 – 

same tint color as the right car.

this.mustPickUp = tint == lane;

This line is the core of the game. mustPickUp property of each target is true if 

tint has the same value as lane. This means target color matches with car color.

It will come very handy when we'll have to check for collisions or missing targets.

125



Create HTML5 Vertical Endless Runner cross platform games

Remember each car must collect all targets matching car color and avoid all 

targets which do not match car color.

Now run the game and look how targets scroll towards cars. This gives the 

illusion cars are running.

Time to add some interaction between cars and targets.

Collecting targets
Cars will be able to collect targets which match with their colors and will explode 

if they hit target with different colors.

We are going to explain this whole process, as it's not that different than what you 

already saw during the creation of the previous game.

We also need a couple of new sound effects, one to be played when a car collects 

126



Create HTML5 Vertical Endless Runner cross platform games

the right target, and one to be played when a car hits a wrong target.

The first sound will be added in create method of playGame object. We are going

to play this sound a lot of times. Well, at least that's what should happen if players 

manage to survive enough.

create: function(){    
     this.bgMusic = game.add.audio("bgmusic");
     this.bgMusic.loopFull(1); 
     this.hitSound = game.add.audio("hit");
     // same as before
}

In update method – remember, it's executed at each frame – we are going to 

check if any of the cars is colliding with any of the targets.

physics.arcade.collide method you've already met in the making of Rising 

Ships also works with group versus group collisions, so we are going to check for 

collision between any car – in carGroup group – with any target – in 

targetGroup group.

These are the new lines to add to update method:

update: function(e){
     cars[0].smokeEmitter.x = cars[0].x;
     cars[1].smokeEmitter.x = cars[1].x;
     game.physics.arcade.collide(this.carGroup, this.targetGroup, function(c, t){
          if(c.tint == t.tint){
               t.destroy();
               this.hitSound.play();
          }
          else{
               this.targetFail(t);
          }
     }, null, this);
}

You can clearly see I am checking for collisions between carGroup and 

targetGroup and the callback function will contain in its arguments c and t the 

bodies which actually collided.

So to check for color match, we just have to see if c tint color is the same as t tint 

color. In this case we simply destroy the target and play the proper sound.

127



Create HTML5 Vertical Endless Runner cross platform games

Things change when a car collects the wrong target, as we have to end the game.

targetFail method will handle everything we have to do before launching the 

game over state. The game is about to end but there's still a lot to do, look at 

targetFail method:

targetFail: function(t){
     game.input.keyboard.removeKey(Phaser.Keyboard.Z);
     game.input.keyboard.removeKey(Phaser.Keyboard.X);
     cars[0].smokeEmitter.on = false;
     cars[1].smokeEmitter.on = false;
     game.time.events.remove(this.targetLoop);
     game.tweens.removeAll();
     for(var i = 0; i < this.targetGroup.length; i++){
          this.targetGroup.getChildAt(i).body.velocity.y = 0;     
     }
     game.input.onDown.remove(this.moveCar, this);
     var explosionEmitter = game.add.emitter(t.x, t.y, 200);
     explosionEmitter.makeParticles("particle");
     explosionEmitter.gravity = 0;
     explosionEmitter.setAlpha(0.2, 1);
     explosionEmitter.minParticleScale = 0.5;
     explosionEmitter.maxParticleScale = 3;
     explosionEmitter.start(true, 2000, null, 200);  
     explosionEmitter.forEach(function(p){
          p.tint = t.tint;
     });
     t.destroy();
     this.bgMusic.stop();
     var explosionSound = game.add.audio("explosion");
     explosionSound.play();
     game.time.events.add(Phaser.Timer.SECOND * 2, function(){
          game.state.start("GameOverScreen");
     }, this);
}

First, t argument is the target which caused the game to end. It's very important to

have it as argument as there are a lot of targets in game but we are going to make 

this one to explode.

Let's see the lines in detail, you'll see there's nothing new, just a collection of well 

known concepts merged into one big script.

game.input.keyboard.removeKey(Phaser.Keyboard.Z);
game.input.keyboard.removeKey(Phaser.Keyboard.X);

When you lose the game, you can't control the cars anymore, so we are removing 

128



Create HTML5 Vertical Endless Runner cross platform games

the listeners waiting for X and Z keyboard input.

input.keyboard.removeKey(keycode) removes callbacks to the keyboard 

handler.

You will also find input listener is disabled, following pretty much the same 

concept.

game.input.onDown.remove(this.moveCar, this);

And now the player is not longer able to control any car.

input.onDown.remove(callback, callbackContext) removes a listener 

waiting for an input.

We also want to stop exhaust emitter to emit particles:

cars[0].smokeEmitter.on = false;
cars[1].smokeEmitter.on = false;

This is how we stop an emitter to emit particles.

emitter.on property determines whether the emitter is currently emitting 

particles (true) or not (false).

Now we must stop new targets to appear, by removing the time event which 

generated them.

game.time.events.remove(this.targetLoop);

New targets won't appear anymore.

time.events.remove(event) removes event.

When it's time to stop cars, we have to remember cars do not move vertically, 

because the illusion of the endless runner is given by moving targets.

To make players believe cars stopped, we will stop targets. They all are in 

targetGroup group so we only have to iterate through all group elements and set 

129



Create HTML5 Vertical Endless Runner cross platform games

their velocity.y property to zero.

for(var i = 0; i < this.targetGroup.length; i++){
     this.targetGroup.getChildAt(i).body.velocity.y = 0;     
}

You already know how to create an explosion and tint its particles. That's what we

are doing now. 

var explosionEmitter = game.add.emitter(t.x, t.y, 200);
explosionEmitter.makeParticles("particle");
explosionEmitter.gravity = 0;
explosionEmitter.setAlpha(0.2, 1);
explosionEmitter.minParticleScale = 0.5;
explosionEmitter.maxParticleScale = 3;
explosionEmitter.start(true, 2000, null, 200);  
explosionEmitter.forEach(function(p){
     p.tint = t.tint;
});

If we really want cars to stop at once, we have to stop their tweens too. 

game.tweens.removeAll();

This is how we stop and remove all existing tweens.

tweens.removeAll method removes all tweens running and doesn't call any of 

the tween onComplete events.

If target explodes, once we created the explosion we have to remove the target 

itself.

t.destroy();

We also stop the background music, as we only want to hear the explosion sound 

effect.

this.bgMusic.stop();

130



Create HTML5 Vertical Endless Runner cross platform games

With the background music stopped, it's time to play the explosion sound effect.

var explosionSound = game.add.audio("explosion");
explosionSound.play();

And finally we'll wait two seconds before launching game over state.

game.time.events.add(Phaser.Timer.SECOND * 2, function(){
     game.state.start("GameOverScreen");
}, this);

Now you can test the game, try to collect targets and see what happens.

In the above picture, here's what happens when the green car collects the red 

131



Create HTML5 Vertical Endless Runner cross platform games

target. Boom, game over.

Game over state hasn't been written yet, so it's just a black screen at the moment, 

but don't worry, we'll create it after a couple more features.

Avoiding Targets
If you remember how we designed the game, we said player must collect all 

targets whose colors match cars colors.

This means if you do not collect a target which color matches the color of the car, 

it's game over.

To develop this feature, we'll introduce Phaser signals.

A Signal is an event dispatch mechanism that supports broadcasting to multiple 

listeners.

In other words, a signal is a custom event listener. Just like we added listeners for 

player click or touch, or for certain keys being pressed, we can define custom 

listeners which are triggered by custom events and fire callback functions just like

built-in Phaser event listeners.

The question now is: how we create such custom events? In create method inside

playGame object, when we create a new target we have to add one line:

create: function(){    
     // same as before
     this.targetLoop = game.time.events.loop(targetDelay, function(){
          for(var i = 0; i < 2; i++){                    
               var target = new Target(game, i);
               game.add.existing(target);
               this.targetGroup.add(target);
               target.missed.add(this.targetFail, this); 
          }
     }, this);
}

This way each target has a missed listener which calls targetFail callback 

function in this context, just like in case of collision between a car and a wrong 

target.

132



Create HTML5 Vertical Endless Runner cross platform games

This leads to another question: how can we define missed listener?

In Target class definition, we have to add a couple of lines:

Target = function (game, lane) {     
     var position = game.rnd.between(0, 1);
     Phaser.Sprite.call(this, game, cars[lane].positions[position], -20, 

"target");
     game.physics.enable(this, Phaser.Physics.ARCADE);
     this.anchor.set(0.5);
     var tint = game.rnd.between(0, 1);
     this.mustPickUp = tint == lane;
     this.tint = cars[tint].tint;
     this.body.velocity.y = targetSpeed;
     this.missed = new Phaser.Signal();
};
 
Target.prototype = Object.create(Phaser.Sprite.prototype);
Target.prototype.constructor = Target;
 
Target.prototype.update = function() {
     if(this.y > game.height - this.height / 2 && this.mustPickUp){
          this.missed.dispatch(this);
     }
     if(this.y > game.height + this.height / 2){
          this.destroy();
     }
};

Let's explore them in detail:

this.missed = new Phaser.Signal();

missed property is a new Phaser signal. This is the constructor, this means with 

this line we declare there is a new listener attached to missed property.

We declared the listener and we made it active with a callback function to be 

called, we only have to fire it.

This is the code which fires the signal:

if(this.y > game.height - this.height / 2 && this.mustPickUp){
     this.missed.dispatch(this);
}

When the target is about to leave the stage to the bottom but mustPickUp property

133



Create HTML5 Vertical Endless Runner cross platform games

is true which meaning the target must have been collected, we dispatch the signal 

passing the target itself as argument.

signal.dispatch(params) dispatches signal signal to all listeners passing 

params parameters to each listener.

In other words, we have a missed listener attached to each target which will call 

targetFail function. The listener is fired when a target which must be picked up 

leaves the stage without being picked up.

And that's game over again. Test the game, and see what happens when you do not

collect a target you should have collected.

Target explodes the same way as wrong targets do when they are collected, and 

that's quite obvious since it's the same snippet of code which handles both cases.

With this step, we are done with targets. Now we will add a scoring system, 

because as usual there's no point in playing a game if you can't make a high score.

134



Create HTML5 Vertical Endless Runner cross platform games

Scoring
Handling player score at this time is very easy as we already defined a global 

score variable and we already have scoreText bitmap text showing current 

score.

At the moment it always shows zero because there isn't any way to increase score 

variable, and that's what we are going to do now.

Moreover, most of the code to handle saving the score on local storage has already

been written, so let's focus on the score itself.

Scoring system in this game is quite easy: you gain one point each quarter second 

you survive.

In create method of playGame object, we need to add a time event to increase the

score every 250 milliseconds, then update scoreText bitmap text.

create: function(){    
     // same as before
     this.scoreLoop = game.time.events.loop(250, function(){
          score++;
          this.scoreText.text = score.toString();
     }, this);
}

Since we don't want score to keep increasing once the player collected a wrong 

target or missed a required target, we are stopping the score when we execute 

targetFail method.

targetFail: function(t){
     game.input.keyboard.removeKey(Phaser.Keyboard.Z);
     game.input.keyboard.removeKey(Phaser.Keyboard.X);
     cars[0].smokeEmitter.on = false;
     cars[1].smokeEmitter.on = false;
     game.time.events.remove(this.targetLoop);
     game.time.events.remove(this.scoreLoop);
     // same as before
}

As score is simply increased by a time event, removing the time event will stop 

the score to increase.

135



Create HTML5 Vertical Endless Runner cross platform games

Run the game now and watch your score increase as you play and stop when you 

collect a wrong target or miss a required target.

And this was the last core feature needed to create this game.

Now we only have to create the game over screen and the info screen with the 

instructions how to play.

Let's start from the screen you will never want to see.

Creating game over screen
The game over screen is exactly the same you created during the development of 

Rising Ships game, here is what you will get:

136



Create HTML5 Vertical Endless Runner cross platform games

We have the random tint color, the bitmap text with both current and best score, a 

glowing “play” button and local storage management to saving the best score.

This is the content of gameOverScreen object:

var gameOverScreen = function(game){};
gameOverScreen.prototype = {
     create: function(){  
          var bestScore = Math.max(score, savedData.score);
          var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
          titleBG.tint = bgColors[game.rnd.between(0, bgColors.length - 1)];
          document.body.style.background = "#"+titleBG.tint.toString(16);
          game.add.bitmapText(game.width / 2, 50 , "font", "Your score", 

90).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 150 , "font", score.toString(), 

120).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 350 , "font", "Best score", 

90).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 450 , "font", bestScore.toString(), 

120).anchor.x = 0.5;
          localStorage.setItem(localStorageName,JSON.stringify({
               score: bestScore
          }));
          var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
          playButton.anchor.set(0.5);
          var tween = game.add.tween(playButton).to({
               width: 220,
               height:220
          }, 1500, "Linear", true, 0, -1); 
          tween.yoyo(true);
     },
     startGame: function(){
          game.state.start("PlayGame");     
     }    
}

As you can see it's exactly the same code used to create the game over screen in 

Rising Ships. So we can move on to the last screen we need to add.

Creating how to play screen
The creation of a good info screen is very important as players will know how to 

interact with the game and won't quit the game because they don't know what to 

do with it.

You are about to see a lot of code now, but don't worry as there isn't absolutely 

anything new, I just reused a few concepts you already know:

137



Create HTML5 Vertical Endless Runner cross platform games

var howToPlay = function(game){};
howToPlay.prototype = {  
     create: function(){  
          var titleBG = game.add.tileSprite(0, 0, game.width, game.height, 

"backsplash");
          var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
          titleBG.tint = tintColor;
          var pickedColors = [tintColor];
          document.body.style.background = "#"+titleBG.tint.toString(16);
          game.add.bitmapText(game.width / 2, 40 , "font", "Change left car lane",

60).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 120 , "font", "Tap or click on the 

left half or Z Key", 36).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 280 , "font", "Change right car 

lane", 60).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 360 , "font", "Tap or click on the 

right half or X Key", 36).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 560 , "font", "Collect targets 

matching car color", 36).anchor.x = 0.5;
          game.add.bitmapText(game.width / 2, 600 , "font", "Avoid other targets",

36).anchor.x = 0.5;
          var leftCar = game.add.sprite(game.width / 2 - 250, 200, "car");
          leftCar.anchor.set(0.5);
          do{    
               tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
          } while (pickedColors.indexOf(tintColor) >= 0)
          leftCar.tint = tintColor;  
          pickedColors.push(tintColor);
          var leftCarTween = game.add.tween(leftCar).to({
               x: game.width / 2 - 50
          }, 500, "Linear", true, 0, -1); 
          leftCarTween.yoyo(true); 
          var rightCar = game.add.sprite(game.width / 2 + 250, 440, "car");
          rightCar.anchor.set(0.5);
          do{    
               tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
          } while (pickedColors.indexOf(tintColor) >= 0)
          rightCar.tint = tintColor;  
          var rightCarTween = game.add.tween(rightCar).to({
               x: game.width / 2 + 50
          }, 500, "Linear", true, 0, -1); 
          rightCarTween.yoyo(true); 
          var playButton = game.add.button(game.width / 2, game.height - 150, 

"playbutton", this.startGame);
          playButton.anchor.set(0.5);
          var tween = game.add.tween(playButton).to({
               width: 220,
               height:220
          }, 1500, "Linear", true, 0, -1); 
          tween.yoyo(true);     
     },
     startGame: function(){
          game.state.start("PlayGame");            
     }
}

A whole page of code. Does it look scary? It shouldn't.

138



Create HTML5 Vertical Endless Runner cross platform games

First, run the game and see what you get once you change startGame method in 

titleScreen object to launch HowToPlay state:

startGame: function(){          
     game.state.start("HowToPlay");                   
}

Now, this is what you should see once you click on “play” button in the title 

screen:

We have a random background color, some texts written with bitmap fonts, two 

moving cars and a glowing “play” button which leads to the game itself.

139



Create HTML5 Vertical Endless Runner cross platform games

Let's break the code in pieces and see it more in detail:

var titleBG = game.add.tileSprite(0, 0, game.width, game.height, "backsplash");
var tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
titleBG.tint = tintColor;
var pickedColors = [tintColor];
document.body.style.background = "#"+titleBG.tint.toString(16);

This is the snippet which adds the background tile sprite and selects a random 

background color to tint it.

Look at pickedColors array to store picked colors and avoid to choose the same 

random color twice as we already did in play game state.

game.add.bitmapText(game.width / 2, 40, "font", "Change left car lane", 
60).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 120, "font", "Tap or click on the 
left half or Z Key", 36).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 280, "font", "Change right car 
lane", 60).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 360, "font", "Tap or click on the 
right half or X Key", 36).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 560, "font", "Collect targets 
matching car color", 36).anchor.x = 0.5;

game.add.bitmapText(game.width / 2, 600, "font", "Avoid other targets", 
36).anchor.x = 0.5;

All the texts you see in this screen are written by these lines, with different font 

size and position.

var leftCar = game.add.sprite(game.width / 2 - 250, 200, "car");
leftCar.anchor.set(0.5);
do{    
     tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
} while (pickedColors.indexOf(tintColor) >= 0)
leftCar.tint = tintColor;  
pickedColors.push(tintColor);
var leftCarTween = game.add.tween(leftCar).to({
     x: game.width / 2 - 50
}, 500, "Linear", true, 0, -1); 
leftCarTween.yoyo(true); 

This is the code which handles the left car.

It's placed on the canvas, tinted with a random color then moved from left to right 

and from right to left with a yoyo tween.

140



Create HTML5 Vertical Endless Runner cross platform games

The do while loop ensures the car will have a random color which does not 

match with background color.

var rightCar = game.add.sprite(game.width / 2 + 250, 440, "car");
rightCar.anchor.set(0.5);
do{    
     tintColor = bgColors[game.rnd.between(0, bgColors.length - 1)];
} while (pickedColors.indexOf(tintColor) >= 0)
rightCar.tint = tintColor;  
var rightCarTween = game.add.tween(rightCar).to({
     x: game.width / 2 + 50
}, 500, "Linear", true, 0, -1); 
rightCarTween.yoyo(true); 

The same concept applies to right car.

var playButton = game.add.button(game.width / 2, game.height – 150, "playbutton", 
this.startGame);

playButton.anchor.set(0.5);
var tween = game.add.tween(playButton).to({
     width: 220,
     height:220
}, 1500, "Linear", true, 0, -1); 
tween.yoyo(true);

And finally the good old glowing “play” button which calls startGame method 

launching the game itself.

Now the game is complete and ready to be played.

I am sure building this second game was way easier than making Rising Ships.

As you continue to learn and practice with Phaser, building games will be easier 

and easier.

By the way, building a game is not just “make stuff work”, we also have to keep 

an eye on resource management, especially when we plan to port our games on 

mobile devices, which may not have the faster CPU.

Saving resources by using object pooling
According to boring theory, we call object pooling the technique which uses a set 

of initialized objects kept ready to use – a "pool" – rather than allocating and 

141



Create HTML5 Vertical Endless Runner cross platform games

destroying them on demand.

In our game, each time you collect a good target, or each time a wrong target 

leaves the stage off the bottom, their sprites are destroyed.

Each time a new target appears from the top of the screen, a new sprite is created.

This happens a lot of times during a game play, and although I am sure Phaser has

a good memory management and garbage collection, this can be very resource-

consuming in the long run. So the idea is never to delete removed/collected 

targets, which will be temporarily stored in a repository (in this case an array) 

until a new target is needed, and that's when we just recover the previously stored 

target.

It will work. Follow me. Let's start with the creation of a new global variable:

var game;
var localStorageName = "doublelanegame";
var bgColors = [0x54c7fc, 0xffcd00, 0xff2851, 0x62bd18];
var score;
var savedData;
var laneWidth = 138;
var lineWidth = 4;
var cars = [];
var carTurnSpeed = 200;
var targetDelay = 1200;
var targetSpeed = 180;
var targetPool = [];

As you can see, the “pool” is just an array.

We are going to initialize this array at each game play, setting it as an empty array.

No targets in the pool when we start playing.

var playGame = function(game){};
playGame.prototype = {
    create: function(){
        targetPool = [];
        targetPool.length = 0;
        // same as before
    }
    // same as before
}

Once the pool has been initialized in create method of playGame object, we are 

142



Create HTML5 Vertical Endless Runner cross platform games

going to add a new method to Target class, to be called each time we need to 

destroy a target. Oh, and we won't talk about “destroying” anymore. When you 

destroy something, it does not exist anymore.

We are going to kill the target.

Target.prototype.prepareToDie = function(){
    this.kill();
    targetPool.push(this);
    console.log("target killed. Targets in the pool: " + targetPool.length)
}

As you can see, when prepareToDie method is called, the target is killed then 

placed in targetPool array. Then we just prompt what we did on the console.

kill method kills a Game Object. A killed Game Object has its alive, exists 

and visible properties all set to false. Killing a Game Object is a way for you

to quickly recycle it in an object pool, as it doesn't destroy the object or free it 

up from memory.

Now we know how to kill a target. Next question is: when are we going to kill it?

Obviously each time we would have destroyed it.

This is update method of Target class featuring object pooling:

Target.prototype.update = function() {
    if(this.alive && this.y > game.height - this.height / 2){
        if(this.mustPickUp){
            this.missed.dispatch(this);
        }
        this.prepareToDie();
    }
};

Before checking if the target left the screen off the bottom, we see if it's alive. 

Then we call prepareToDie method rather than destroying it like before.

alive property checks if a Game Object is alive or dead.

prepareToDie method is also called inside update method of playGame object 

when we need to remove a target:

143



Create HTML5 Vertical Endless Runner cross platform games

update: function(e){
    cars[0].smokeEmitter.x = cars[0].x;
    cars[1].smokeEmitter.x = cars[1].x;
    game.physics.arcade.collide(this.carGroup, this.targetGroup, function(c, t){
        if(t.alive){
            if(c.tint == t.tint){
                this.hitSound.play();
            }
            else{
                this.targetFail(t);
            }
            t.prepareToDie();
        }
    }, null, this);
}

Look as I always check for alive property.

Now we have to remove the line which destroys a target from targetFail 

method, as we kill the target no matter if the collected target is right or wrong.

targetFail: function(t){
    // same as before
    // t.destroy() <- remove this
    // same as before
}

From now on, when you run the game no targets will be destroyed anymore, as 

they will fill targetPool array.

What to do with these targets? Let's add another method to Target class to make 

them revive:

Target.prototype.prepareToRevive = function(lane){
    var position = game.rnd.between(0, 1);
    this.reset(cars[lane].positions[position], -20);
    var tint = game.rnd.between(0, 1);
    this.mustPickUp = tint == lane;
    this.tint = cars[tint].tint;
    this.body.velocity.y = targetSpeed;
    console.log("target revived. Targets in the pool: " + targetPool.length)
}

The code is almost the game as the one used in the constructor, with the exception

we don't create a target as a new sprite with physics and signals attached, but 

144



Create HTML5 Vertical Endless Runner cross platform games

rather we reset it to its new position – which is determined in the same way we did

in the constructor.

reset(x, y) method resets the Game Object moving it to the given x/y world 

coordinates settings its alive, exists and visible properties to true.

When to call this method?

Each time we need a new target and we have one in the object pool. Look at the 

changes to create method of playGame object:

create: function(){
    // same as before
    this.targetLoop = game.time.events.loop(targetDelay, function(){
        for(var i = 0; i < 2; i++){
            if(targetPool.length == 0){
                console.log("target created from scratch");
                var target = new Target(game, i);
                game.add.existing(target);
                this.targetGroup.add(target);
                target.missed.add(this.targetFail, this);
            }
            else{
                var target = targetPool.pop();
                target.prepareToRevive(i);
            }
        }
    }, this);
    // same as before
}

We are inside the looped time event which creates two new targets each 

targetDelay milliseconds.

The first thing we check is if targetPool is populated.

If targetPool is empty, then we will create a target the same old way we are used

to, I am just prompting it in the console.

If we find a target in targetPool, we remove it from the array and execute 

prepareToRevive method on it. The i argument is the lane, just like when we use

the constructor.

pop method removes the last element from an array and returns that element. 

This method changes the length of the array.

145



Create HTML5 Vertical Endless Runner cross platform games

Now run the game. You wont' see anything different, but if you open the console, 

that's what you will see:

First targets are created from scratch, then as you progress into the game, more 

and more targets are picked from the pool until no new targets are created 

anymore.

This is the power of object pooling.

146



Create HTML5 Vertical Endless Runner cross platform games

Where to go now
When you make a game following a tutorial or a book, I always suggest to make it

twice: the first time following the tutorial and the second time on your own.

Take a deep breath, delete everything and create the game from scratch.

Then, add some basic features, like adding a new friendly barrier which gives you 

five seconds of invisibility if you hit it.

Thank you and let's keep in touch
Now you finished the book.

It's my second self-published book after three books written under a publishing 

label and one booklet, so I apologize if you found some errors. I am continuously 

updating and fixing my self published book so I hope sooner or later this book 

will be exactly what you expect.

Please notify me of any errors you should find, and give me feedback dropping 

me a line to info@emanueleferonato.com

Also, follow my blog www.emanueleferonato.com where you can find new 

tutorials almost daily.

Finally, my Facebook fan page https://www.facebook.com/emanueleferonato and 

Twitter account https://twitter.com/triqui

I would like to thank Richard Davey and all Photon Storm guys for making the 

incredible Phaser framework.

Another special “thank you” goes to Norman Rozental and to the guys at 

Ketchapp Studio for making such fun games.

I hope you enjoyed reading this book as much as I enjoyed writing it.

Emanuele.

147

https://twitter.com/triqui
https://www.facebook.com/emanueleferonato
http://www.emanueleferonato.com/
mailto:info@emanueleferonato.com

	Create HTML5 Vertical Endless Runner cross platform games
	About endless runners and the game we are building
	What is a cross-platform game and why should I make cross-platform games?
	What is Phaser?
	Choosing a text editor
	Choosing a web server
	Choosing a web browser
	Other software you may need
	Downloading Phaser
	Setting up the project
	Running your game
	Adding game states
	Creation of the boot state
	Creation of the preload state
	Creation of title screen
	Making play button more dynamic
	Making background more interesting
	Creation of game background
	Placing the spaceship
	Moving the spaceship horizontally
	Adding the ghost effect
	Adding smoke trail with particles
	Making the spaceship rise
	Using swipe to move back the ship
	Adding barriers
	Removing Barriers
	Continuously adding barriers
	Checking collisions
	Dying with style
	Invulnerability
	Some fixes here and there
	Increasing difficulty
	Scoring
	Highlighting score sector
	Showing score
	Adding friendly barriers
	Creation of game over state
	Saving high scores
	Adapting the game to various resolutions
	Adding sounds
	Resetting the game on restart
	Adding Keyboard controls
	Adding “how to play” state
	Making your next game
	Creating boot state
	Creating preload state
	Creating title screen
	Creating the road
	Adding the cars
	Controlling the cars
	Controlling the cars with keyboard
	Adding targets
	Collecting targets
	Avoiding Targets
	Scoring
	Creating game over screen
	Creating how to play screen
	Saving resources by using object pooling
	Where to go now
	Thank you and let's keep in touch

