Week 27

Trinity - intro to computer Programming
With Game Development

04/10/2023

Congratulations to all our students!

(you are learning more and growing in your
skill set!)

Students we will begin a new tutorial for our
Next game development segment -
| want to credit the author:
(below)

T_Create Phaser cross...

Create HTML5 Vertic...

Create HTML5

What is a cross-platf...

What is Phaser?

o
Choosing a text editor v e I C
Choosing a web server r q

Choosing a web brow...

Nthar enftuara unitm

U SUIIEIE yUL T,
Downloading Phaser
Setting up the project
Running your game
Adding game states
Creation of the boot s...
Creation of the preloa...
Creation of title screen

Making play button m... ™ . 5
Making background...) using Phaser framework

Creation of game bac.. and only FREE software

Placing the spaceship
Moving the spaceship...
Adding the ghost effe...
Adding smoke trail wi...
Making the spaceship...
Using swipe to move...
Adding barriers

Removing Barriers

Emanuele Feronato

Continuously adding...

| want to credit the author: Emanuele Feronato

Today, We will have 4 Demonstrations...

Students focus on how the game is

Developed, what strategies the author is teaching,
And the code we are learning, lastly about the game
Itself...

We can briefly review the introduction, we already know about
browsers,

I.D.E. Integrated Development Environment - Brackets,

Web Servers - Fenix (PC) or

(Mac) Python3 -m simple.http 80xx(Terminal)

Setting up the project

The whole project is basically a web page including Phaser
framework and another JavaScript file with our game.
There are two important things you should consider before
you start coding your game: first, size matters. When
importing third party frameworks like Phaser, always
choose minified versions if provided.

Talking about Phaser, inside build folder in the zipped
package you just downloaded, you will find phaser.min.js file.
That's the only Phaser file we will need during the
development of our game.

Second, writing the entire code of a game in a single file is
generally considered a malpractice. You should create one
JavaScript file for the splash screen, another for game
logic, and basically one file for each actor you will include
in your game. (Launch the index.html)

The problem is some sponsors need to have the entire
game in one file. And since finding sponsors and selling
game licenses can be a great income source, we have to
code games with sponsors needs in mind.

Our entire game will be written in a file called game. js.

Create an index.html file which is the web page you will call to launch the
game, and you'll have all you need to start coding the game.

This is how your project folder will look like:

9 & 9

game,s indexhtm phaser.minjs

Icons may be different according to your file preferences.

Let's start with index.html:

<IDOCTYPE html>

<html>
<head>
<style type="text/css">
body{
background: #0006600;
padding:@px;
margin:@px;

}
</style>
<script src="phaser.min.js"></script>
<script src = "game.js"></script>
</head>
<body=>
</body>
</html=>

As you can see, it's just an empty web page with only a call to two JavaScript
files: phaser.min. js is the file we just downloaded, and game. js will contain
our game script. There are very few lines in game. js too, at the moment:

var game;

window.onload = function() {
game = new Phaser.Game(648, 960, Phaser.AUTO, "");
}

Running your game

To run the game on your local server, simply point your browser to your game

folder which in most cases will be http://localhost/yourgamefolder/ and this is

what you should get if running it on your Google Chrome browser:

G D Elements Console ources Network Timelne Profiles Resources Audas
© ¥V <topframe> ¥ Preserve log

| NebGL | MebAudio http phaser.io A“5i™sd™ ghaser

This is the default debug string Phaser prompts on the console window. You can
generally access to your console window pressing F12 in your browser, anyway
refer to your browser documentation.

Text output may vary a bit according to Phaser version, this book has been
updated to Phaser 2.4.7.

Adding game states

Although managing Phaser states is an advanced feature, it's very important to
learn how to use states from the beginning of your Phaser programming course, as
they will allow you to write better code and have a better resource management.

Let's think about the game we are making. We still do not know to code it but we
can easily imagine the game will all have at least a title screen, a screen with the
game itself, and a game over screen.

Each “screen” can be developed as a Phaser state, which can be executed cleaning
memory and resources before it starts, allowing us to easily switch through game

“screens”.

Now let's write this concept in a more detailed way, listing all the states we will
actually use in our game:

Boot state: in the boot state we will make all adjustment to the game to be resized

Creation of title screen

We want the title screen to have game title displayed — obviously — and a “play™
button. Also, to give the game a more modern feeling, the background color
should change at each play.

While just choosing a random color would be easy, you understand not all colors
are suitable as background colors. We want to have only a small selection of
background colors and randomly choose among them.

To choose nice background colors, if you don't have ideas you can inspire yourself
by googling something like “color schemes”, you'll get a lot of ideas, satisfaction
guaranteed.

All background colors selected will be stored into bgColors array which will be
declared as a global variable. Declaring all customizable variables as global
variables is a good practice from a game developer point of view because it will
allow sponsors to easily edit the most important parameters if they need to tune
the gameplay.

So, here is bgColors array with its 10 colors to be randomly chosen:

var game;
var bgColors = [OxF16745, OXFFC6SD, 0x7BC8A4, Ox4CC3D9, 0x93648D, 0x7c786a,
0Xx588c73, OxBcA646, 0x2a5b84, 0x73503c];

Now we have to choose one color, then place the title and the play button we

Click or tap on the button, and you will be redirected on a black screen — actually
PlayGame state — seeing a debug message on your console.

© ¥V <wopfamer v Preserve

This has been a very important step as you learned how to place stuff on the stage.

You can place anything you want with just a line or two.

Making play button more dynamic

While the button works well, it's just a static circle with a triangle inside. No
matter how cute look your buttons, they are just flat images if you don't animate
them a bit.

That's why you are going to learn to create animations with Phaser tweens.

Tween is a Phaser key feature. You will use a lot of tweens in the making of this
game and more in general in the making of every game which requires
animations.

Let's add a tween in create method after the button is placed on the stage:

create: function(){
game.stage.backgroundColor = bgColors[game.rnd.between(®, bgColors.length -
1)1;
var title = game.add.image(game.width / 2, 216, "title");
title.anchor.set(8.5);
var playButton = game.add.button(game.width / 2, game.height - 150,
"playbutton", this.startGame);
playButton.anchor.set(0.5);
var tween = game.add.tween(playButton).to({
width: 220,
height:220
}, 1500, "Linear", true, 0, -1);
tween.yoyo(true);

Everything is made to make play button grow a bit until its width and height reach
220 pixels.

From our downloads lets open the pdf file:
T_Create Phaser cross platform games.pdf

Demo 1 <ship> , moves with a click
Demo 2 <add emitter> visible
Demo 3 <add vertical lift>

