
Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

Trinity Intro to Computer Programming
With Game Development

04/03/2024

Today we will continue with our "Dude Runner" game by adding:
Score; and more.

First we will add a "Score"

Next:

In order to round our game out it's time to add
some baddies. This will give a nice element of
challenge to the game, something that was
previously missing.

The idea is this: When you collect all the stars
the first time it will release a bouncing bomb.
The bomb will just randomly bounce around the
level and if you collide with it, you die. All of the
stars will respawn so you can collect them again,
and if you do, it will release another bomb. This
will give the player a challenge: get as high a
score as possible without dying.

The first thing we need is a Group for the bombs
and a couple of Colliders:

bombs = this.physics.add.group();
this.physics.add.collider(bombs, platforms);

this.physics.add.collider(player, bombs, hitBomb,
null, this);

The bombs will of course bounce off the
platforms, and if the player hits them we'll call
the hitBomb function. All that will do is stop the
game and turn the player red:

function hitBomb (player, bomb)
{
 this.physics.pause();
player.setTint(0xff0000);

player.anims.play('turn');

gameOver = true;
}

So far, so good, but we need to release a bomb.
To do that we modify the collectStar function:

function collectStar (player, star)
{
 star.disableBody(true, true);
 score += 10; // score = score + 10;
 scoreText.setText('Score: ' + score);

if (stars.countActive(true) === 0)
 {
 stars.children.iterate(function (child) {

 child.enableBody(true, child.x, 0, true, true);

});

var x = (player.x < 400) ? Phaser.Math.Between(400, 800) :
Phaser.Math.Between(0, 400);

var bomb = bombs.create(x, 16, 'bomb');
 bomb.setBounce(1);
 bomb.setCollideWorldBounds(true);
 bomb.setVelocity(Phaser.Math.Between(-200, 200), 20);

}
}

We use a Group method called countActive to see how
many stars are left alive. If it's none then the player
has collected them all, so we use the iterate function
to re-enable all of the stars and reset their y position
to zero. This will make all of the stars drop from the
top of the screen again.

The next part of the code creates a bomb. First we
pick a random x coordinate for it, always on the
opposite side of the screen to the player, just to give
them a chance. Then the bomb is created, it's set to
collide with the world, bounce and have a random
velocity.

The end result is a nice little bomb sprite that
rebounds around the screen. Small enough to be easy
to avoid, at the start, but as soon as the numbers
build up it becomes a lot harder!

Conclusion

You have now learned how to create a sprite with physics
properties, to control its motion and to make it interact
with other objects in a small game world. There are lots
more things you can do to enhance this. Why not expand
the size of the level and allow the camera to scroll?
Maybe add in different baddie types, different value pick-
ups, or give the player a health bar.

Or for a non-violent style game you could make it a speed-
run and simply challenge them to collect the stars as
quickly as possible.

With the help of what you have learned in this tutorial
and the hundreds of examples available to you, you
should now have a solid foundation for a future project.
But as always if you have questions, need advice or want
to share what you've been working on then feel free to
ask for help in the Phaser forum.

Next we will have a demo on other Phaser Example…

Week 26

