
Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

Trinity Intro. To Computer Programming
With Game Development 03/27/2024

stars = this.physics.add.group({
 key: 'star',
 repeat: 11,
 setXY: { x: 12, y: 0, stepX: 70 }
});
stars.children.iterate(function (child) {

child.setBounceY(Phaser.Math.FloatBetween(0.4, 0.8));

});

Todays class we will continue with our
Dude Runner - Player Game with the <Sprites>…

First we will have a Demo & Exercise from Coach Arthur -
Phaser_Sample (Learning more about Phaser Physics)…
 <<eye candy>>

Add line 36 to the (dir) sample
Index.html
particles.startFollow(logo);

Students, how does this change the code???

Next -

It's time to give our little game a purpose. Let's drop a
sprinkling of stars into the scene and allow the player to
collect them. To achieve this we'll create a new Group
called 'stars' and populate it. In our create function we
add the following code

The process is similar to when we created the
platforms Group. As we need the stars to move and
bounce we create a dynamic physics group instead of
a static one.

Groups are able to take configuration objects to aid in
their setup. In this case the group configuration object
has 3 parts: First it sets the texture key to be the star
image. This means that any children created as a result
of the config object will all be given the star texture by
default. Then it sets the repeat value to be 11.
Because it creates 1 child automatically, repeating 11
times means we'll get 12 in total, which is just what
we need for our game.

The final part is setXY - this is used to set the position of
the 12 children the Group creates. Each child will be
placed starting at x: 12, y: 0 and with an x step of 70.
This means that the first child will be positioned at 12
x 0, the second one is 70 pixels on from that at 82 x 0,
the third one is at 152 x 0, and so on. The 'step' values
are a really handy way of spacing out a Groups
children during creation. The value of 70 is chosen
because it means all 12 children will be perfectly
spaced out across the screen.

The next piece of code iterates all children in the
Group and gives them a random Y bounce value
between 0.4 and 0.8. The bounce range is between 0,
no bounce at all, and 1, a full bounce. Because the
stars are all spawned at y 0 gravity is going to pull
them down until they collide with the platforms or
ground. The bounce value means they'll randomly
bounce back up again until finally settling to rest.

If we were to run the code like it is now the stars
would fall through the bottom of the game and out of
sight. To stop that we need to check for their collision
against the platforms. We can use another Collider
object to do this:

this.physics.add.collider(stars, platforms);

As well as doing this we will also check to see if
the player overlaps with a star or not:
this.physics.add.overlap(player, stars, collectStar, null, this);

This tells Phaser to check for an overlap between
the player and any star in the stars Group. If
found then they are passed to the 'collectStar'
function:
function collectStar (player, star)
{
 star.disableBody(true, true);
}

Quite simply the star has its physics body
disabled and its parent Game Object is made
inactive and invisible, which removes it from
display. Running the game now gives us a player
that can dash about, jump, bounce off the
platforms and collecting the stars that fall from
above.

-------> NEXT

Demo with Coach Arthur -
(code) & Add Score.

Line 105 (add this line)
 this.physics.add.collider(stars, platforms);

Run demo: (Notice what happens with the game)

Line 107 (add this line)

this.physics.add.overlap(player, stars, collectStar, null, this);

Line 140 modify function collectstar (add these 2 lines):
 score = score + 10;
 scoreText.setText('Score: ' + score);

Week 25

