
03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

03/06/2023

Making a Game with Phaser 3 is both fun and easy
following these steps. Here we will learn how to
create a small game involving a player running and
jumping around platforms, collecting stars and more.
While going through this process we'll explain some of
the core features of the Phaser framework.

Quick Review - What is Phaser?

Phaser is an HTML5 game framework which aims to
help developers make powerful, cross-browser
HTML5 games really quickly. It was created specifically
to harness the benefits of modern browsers, both
desktop and mobile. The only browser requirement is
the support of the canvas tag.

** it takes 3 things to get something done:
Decide What to do… (this is the hardest step)1)
Decide How you will do it…2)
Begin, and get it all done, Do it…3)

Making a Phaser Game:
Loading Assets

Let's load the assets we need for our game. You do
this by putting calls to the Phaser Loader inside of a
Scene function called preload. Phaser will automatically
look for this function when it starts and load anything
defined within it.
Currently the preload function is empty. Change it to:
function preload ()
{
 this.load.image('sky', 'assets/sky.png');
 this.load.image('ground', 'assets/platform.png');
 this.load.image('star', 'assets/star.png');
 this.load.image('bomb', 'assets/bomb.png');
 this.load.spritesheet('dude',
 'assets/dude.png',
 { frameWidth: 32, frameHeight: 48 }
);
}

This will load in 5 assets: 4 images and a sprite
sheet. It may appear obvious to some of you, but I
would like to point out the first parameter, also
known as the asset key (i.e. 'sky', 'bomb'). This string
is a link to the loaded asset and is what you'll use in
your code when creating Game Objects. You're free
to use any valid JavaScript string as the key.

(Key:Value)

Display an Image

In order to display one of the images we've loaded
place the following code inside the create function:

this.add.image(400, 300, 'sky');

The values 400 and 300 are the x and y coordinates of
the image. Why 400 and 300? It's because in Phaser
3 all Game Objects are positioned based on their
center by default. The background image is 800 x
600 pixels in size, so if we were to display it
centered at 0 x 0 you'd only see the bottom-right
corner of it. If we display it at 400 x 300 you see the
whole thing.

Hint: You can use setOrigin to change this. For
example the code: this.add.image(0, 0, 'sky').setOrigin(0,

0) would reset the drawing position of the image to
the top-left. In Phaser 2 this was achieved via
the anchor property but in Phaser 3 it's
the originX and originY properties instead.

The order in which game objects are displayed
matches the order in which you create them. So if
you wish to place a star sprite above the
background, you would need to ensure that it was
added as an image second, after the sky image:
function create ()
{
 this.add.image(400, 300, 'sky');
 this.add.image(400, 300, 'star');
}

If you put the star image first it will be covered-up by
the sky image.

World Building
Under the hood this.add.image is creating a new Image
Game Object and adding it to the current Scenes display
list. This list is where all of your Game Objects live. You
could position the image anywhere and Phaser will not
mind. Of course, if it's outside of the region 0x0 to
800x600 then you're not going to visually see it,
because it'll be "off screen", but it will still exist within
the Scene.

The Scene itself has no fixed size and extends infinitely
in all directions. The Camera system controls your view
into the Scene and you can move and zoom the active
camera as required. You can also create new cameras
for other views into the Scene. This topic is beyond the
scope of this specific tutorial, suffice to say the camera
system in Phaser 3 is significantly more powerful than in
v2. Things that were literally not possible before now
are.

For now let's build up the Scene by adding a background
image and some platforms. Here is the
updated create function:
var platforms;
function create ()
{
 this.add.image(400, 300, 'sky');

platforms = this.physics.add.staticGroup();

platforms.create(400, 568,
'ground').setScale(2).refreshBody();

// Collider

platforms.create(600, 400, 'ground');
 platforms.create(50, 250, 'ground');
 platforms.create(750, 220, 'ground');
}

Glancing quickly at the code you'll see a call to this.physics.
This means we're using the Arcade Physics system, but
before we can do that we need to add it to our Game
Config to tell Phaser our game requires it. So let's
update that to include physics support. Here is the
revised game config:
var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 300 },
 debug: false
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
};

The new addition is the physics property.

Good Morning Trinity - Introduction to
Computer Programming with Game
Development…

We will begin with a "PHASER"<Logo> (animation type) Demo,
to learn more about the framework of Game Development…

Demo from Coach Arthur
(hands on Exercise - making the particle emitter follow the
animated LOGO)…

Then, we Launch a series of classes that will build a new game
from the ground up. Many students have been where you are
today, before. After this class you will be the one helping others
to cross the same hurdles. Be an encouragement to others &
lend a helping hand.

Today's Class is about Building
the World that your new game
will live in!!!!

More about Game Design through: Phaser

The Platforms
(important for our player to jump,
And explore the scene)

We just added a bunch of code to
our create function that deserves a more detailed
explanation. First, this part:
platforms = this.physics.add.staticGroup();

This creates a new Static Physics Group and
assigns it to the local variable platforms. In Arcade
Physics there are two types of physics bodies:
Dynamic and Static. A dynamic body is one that
can move around via forces such as velocity or
acceleration. It can bounce and collide with other
objects and that collision is influenced by the
mass of the body and other elements.

In stark contrast, a Static Body simply has a
position and a size. It isn't touched by gravity,
you cannot set velocity on it and when
something collides with it, it never moves. Static
by name, static by nature. And perfect for the
ground and platforms that we're going to let the
player run around on.

But what is a Group? As their name implies they
are ways for you to group together similar
objects and control them all as one single unit.
You can also check for collision between Groups
and other game objects. Groups are capable of
creating their own Game Objects via handy
helper functions like create. A Physics Group will
automatically create physics enabled children,
saving you some leg-work in the process.

With our platform Group made we can now use
it to create the platforms:
platforms.create(400, 568,
'ground').setScale(2).refreshBody();
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

As we saw previously it creates this scene:

During our preload we imported a 'ground'
image. It's a simple green rectangle, 400 x 32
pixels in size and will serve for our basic platform
needs:

The first line of code above adds a new ground
image at 400 x 568 (remember, images are
positioned based on their center) - the problem
is that we need this platform to span the full
width of our game, otherwise the player will just
drop off the sides. To do that we scale it x2 with
the function setScale(2). It's now 800 x 64 in size,
which is perfect for our needs. The call
to refreshBody() is required because we have scaled
a static physics body, so we have to tell the
physics world about the changes we made.

The ground is scaled and in place, so it's time for
the other platforms:
platforms.create(600, 400, 'ground');
platforms.create(50, 250, 'ground');
platforms.create(750, 220, 'ground');

The process is exactly the same as before, only
we don't need to scale these platforms as they're
the right size already.

3 platforms are placed around the screen, the
right distances apart to allow the player to leap
up to them.

Week_23

