Week 21

Trinity - Introduction to Computer Programming with
Game Development.

02/21/2024
Today Lesson is about audio (Adding Sounds)

Adding the right audio, enhances the user's experience.
Audio has a rich history in Game Development, dating
back from the 1970's when the Milton Bradley released a
hand held audio game called "Simon".

Simon is an electronic game of
short-term memory skill invented
by Ralph H. Baer and Howard J.
Morrison, working for toy design
firm Marvin Glass and Associates,
with software programming by
Lenny Cope. The device creates a
series of tones and lights and
requires a user to repeat the

4
Later in the 1990's the "Bop it" was released:
R0 Vi Ry

} g o P S /o8 ¥
¥ 7 't S

R o leE ) ,§~"v'-\‘7 2 Lol

B e g4 '.L"v‘ Sy io e

T Lot S St TRy

Tt P i




Bop Ittoys are a line of audio games. By
following a series of commands issued
through voice recordings produced by a
speaker by the toy, which has multiple inputs
including pressable buttons, pull handles,
twisting cranks, spinnable wheels, flickable
switches—the player progresses and 1!

Later advancements in audio included TTS

(Text To Speech) and this is becoming more popular in
current games. Another important use for audio is for
the visually impaired community

Visual or vision impairment is E 1 a0

the partial or total inability of visual

perception. For the former and I‘ P P

latter , the terms |/ Sii

atte gase e terms .ow vision TOZ :

and blindness respectively are

often used. In the absence of LPED « =
. PECFD = =aw

treatment such as corrective EDFCZP ¢ =u

eyewear, assistive devices, and PDLOPE D R ——

medical treatment - visual PEFPOTEC & 2w

a LEroDPrCY 9
FrrLTr e n»

Audio accessibilities are very helpful to this
community!



With the rise in popularity of voice assistants such
as amazon alexa came a new set of audio games.
As of June 2021, 10,000 audio games were
available as Alexa Skills for use with Amazon Alex,
Among them are games like Rain Labs' Animal
Sounds, which asks users to correctly identify the
noises made by various animals.

Today we will work on our 4096 Game,

And add sound effects... This will be an interactive
demo, where you will update your code with Coach
Arthur to add sound to the game...

*Please Pay Close Attention™
Everything you need is in this (downloaded) file
week 21 cp.pdf

First lets review - look at Windows file Explorer / or
Mac - Finder... (look at the sub-directories) - and
Explore more...

Adding Sound Effects

Our 4096 game will have two sound effects: one to be
played when the player moves, and one to be played
when a tile upgrades (example: [2] -> [2] => [4]).



To keep the game folder structure well organized, we
are creating a new folder inside assets folder, which
already contains sprites folder, and we are calling it
sounds.

Two sounds are added to sounds folder, in two
different formats: mp3 and ogg, making the folder
content look like this:

©hoh

grow.mp3 grow.ogg move.mp3 move.ogg

Why did I use two sound formats?

It's a compatibility matter: not all browsers are capable to reproduce all kind of
sound files. Using mp3 and ogg together should grant the best device and browser
coverage.

Preloading sounds is not different than preloading images, as you can see in
preload function in bootGame class:

preload(){
this.load.image("emptytile", "assets/sprites/emptytile.png");
this.load.spritesheet("tiles", "assets/sprites/tiles.png", {
frameWidth: gameOptions.tileSize,
frameHeight: gameOptions.tileSize
}):
this.load.audio("move", ["assets/sounds/move.ogg", "assets/sounds/move.mp3"]);
this.load.audio("grow", ["assets/sounds/grow.ogg", "assets/sounds/grow.mp3"]);

}

Add these lines to the preload() function:
lines 42 & 43 of the game.js (in the downloads), line 42

f\l“‘nf‘ll" nv:nl—o “I\“' ‘7"\“'



dllTduy TAIDLW 1Vl yuu:

this.load.audio("move", ["assets/sounds/move.ogg",
"assets/sounds/move.mp3"]);
this.load.audio("grow", ["assets/sounds/grow.ogg",
"assets/sounds/grow.mp3"]);

load.audio(key, audioFiles) handles sound preloading. The first argument
is the key, the unique name assigned to the sound, the second is an array of
files to be loaded, in different formats.

With sounds ready to be played, it's time to see how we can reproduce them, but
first let me speed up a bit the game, now that we are sure animations and tweens
work the right way:

var gameOptions = {

tileSize: 200,
tileSpacing: 20,
boardSize: {

rows: 4,

cols: 4
3
tweenSpeed: 50,
swipeMaxTime: 1000,
swipeMinDistance: 20,
swipeMinNormal: ©.85

Much better now, the game is faster and more enjoyable thanks to this little

change to tweenSpeed value in gameOptions global object.

Back to the sounds, we need to play a sound each time the player does a legal
move, and each time a tile is upgraded, but first we have to create two properties
storing the sounds themselves.

On line 9 change the tweenSpeed from 200 to 50,



Quick Review of TweenSpeed: (Line 266 - this is done)

Now we have a new tween, very similar to the one you saw when you animated
newly added “2” tiles.

this.tweens.add({

targets: [tile],

X: point.x,

y: point.y,

duration: gameOptions.tweenSpeed * distance / gameOptions.tileSize,

callbackScope: this,

onComplete: function(){
this.movingTiles --;
tile.depth = 0;
if(this.movingTiles == 0){

this.refreshBoard();

}

}
o)

This time the properties to tween are x and y position of tile sprite.

The duration of the tween is determined both by tweenSpeed value and the
distance to travel. Since distance is measured in pixels and we want to work

with tiles, we divided distance by tileSize to get the amount of tiles to travel.

Therefore the animation will happen faster with a lower
value.

Next, (Create is line 54), add these at line 75 & 76

Much better now, the game is faster and more enjoyable thanks to this little

change to tweenSpeed value in gameOptions global object.

Back to the sounds, we need to play a sound each time the player does a legal
move, and each time a tile is upgraded, but first we have to create two properties
storing the sounds themselves.

We are doing it at the end of create method of playGame class:

rraatafl\ S



CCCCCC

this.moveSound = this.sound.add("move");
this.growSound = this.sound.add("grow");

}

Adding sounds to the game is not that different than adding sprites, just add them.

sound.add(key) adds a new audio file to the sound manager. key is the

unique name we gave to the sound.

There is a class called playGame that extends the
Phaser.Scene

(line 48), on line 52 begins the create method of this class;
When this class gets created...

Add these lines at 75 (un-comment by removing the //) & 76
this.moveSound = this.sound.add("move");
this.growSound = this.sound.add("grow");

Next,

Once we have the sounds stored into variables, we need
to play them.

We said we are going to play the move sound each time
the player makes a legal

move, so we need to add a couple of lines to makeMove

method:

Once we have the sounds stored into variables, we need to play them.



We said we are going to play the move sound each time the player makes a legal

move, so we need to add a couple of lines to makeMove method:

makeMove(d){
// same as before
if(this.movingTiles == 0){
this.canMove = true;

else{
this.moveSound.play();
}

}

The MakeMove(method) begins at line 158.
At line 198 add these 3 lines:

else{
this.moveSound.play();

Next,

We enter the else block if movingTiles is different than zero, that is if we are

moving at least one tile, so it's time to play moveSound sound.
I play() method plays a sound.

When to play growSound? Each time a tile is updated, inside upgradeTile
method:

upgradeTile(tile){
this.growSound.play();
// same as before



}

This way moveSound is played only once per move, as it would be too noisy to

play the same sound at each tile movement in a single turn.

growsound can be played each time a tile upgrades, even if it's happening in the

same turn, because we want to emphasize this event.

The UpgradeTile(method) begins at line 221
At line 223, remove the comment :

//this.growSound.play();
((remove the "//" which is a comment))

Great Job,

Now we will test this:
Create a new Fenix Web Server,
And point it to this (dir)

<<similar to>>
C:\Trinity\Compute_Programming\Week21\sounds



