
HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

HTML 5 Game Development using
JavaScript and Gaming Development
Platform - This week we will continue learning
about Phasor Game Development Platform

What is a cross-platform game and why
should I make cross-platform games?

With the great interest in mobile games, capable of running on modern
portable devices such as smart phones and tablets, there's a lot of
talking about “cross- platform” term these days.
Although we are talking about modern devices, the cross-platform
concept comes from an older computer age, before smart phones and
tablets, probably before any kind of portable device smaller than a mid-
sized suitcase.

In its original context, cross-platform is an attribute conferred to
computer software or computing methods and concepts that are
implemented and inter- operate on multiple computer platforms.
Such software and methods are also called “platform independent”.
To tell you the short story, a cross-platform software will run on any
platform without special adaptation, or with a minimum special
adaptation.

A good example of a cross-platform language is Java: a compiled Java
program runs on all platforms under Java Virtual Machine, which you
can find in all major operating systems, including Windows, Mac OS and
Linux.

What is HTML5?
HTML5 is the latest version of HTML, or Hypertext Markup
Language, the code web pages are mostly built with.
We can basically split each web page in three kinds of code: HTML,
which provides the structure; Cascading Style Sheets (CSS), which
take care of presentation; and JavaScript, which makes things
happen.
Unlike other tools like Flash or Java, HTML5 works without requiring
any additional software like browser plugins or extensions, and it's
capable of doing everything from animation to apps, can play music
or movies, and can also be used to build incredibly complicated
applications – or in this case, games – that run on almost any
browser.
Moreover, HTML5 isn't proprietary, so you don't need to pay fees,
subscriptions or royalties to use it. It's also cross-platform, which
means it doesn't care whether you're using a tablet or a smart
phone, or a laptop, or a smart TV: if your device browser supports
HTML5 – and most of them do – your app will work flawlessly.
At this time you may think you have to learn to code HTML5 to build
a HTML5 game.
That's not true. Actually, you won't be writing more than a couple of
lines of HTML5, since your game will be written in JavaScript.
JavaScript is a scripting language that allows you to create
dynamically updating content, control multimedia, animate images,
and pretty much everything you need to build a game, especially if
combined with JavaScript frameworks created with game
development in mind.

What is Phaser?
Phaser is a free HTML5 game framework which aims to help
developers make powerful, cross browser HTML5 games really
quickly using JavaScript.
JavaScript, being a familiar and intuitive language, is one of the
most common languages so even if you didn't already developed
JavaScript applications you will find a lot of books and tutorials
around the web to get you started.
Anyway, you don't need anything else than this book to build
your first complete game, so let's start having some fun.

Ok, I am lost. HTML5, CSS, JavaScript,
Phaser... too much stuff
Actually, it's way easier than you may think. Your final game will
be a HTML5 game, but actually the only HTML5 element you will
be using in your game is the <canvas> element, which is only a
container for the graphics.
You will use JavaScript to draw and update the graphics, as well
as to define the game design.
Phaser is the JavaScript framework which you will use to handle
sprites, sound effects, graphic effects, explosions, screen updates
and basically everything capable of making your game look nice,
move smooth and sound good.
CSS will be used for minor adjustments on the page which will
host your game, mostly to define where <canvas> element should
be placed.

Choosing a free text editor
In order to start coding games, you'll first need a software to
write code. There are a lot of free offers:
Brackets (http://brackets.io/) is an open-source editor written in
HTML, CSS, and JavaScript with a primary focus on web
development and available for OS X, Windows, and Linux
machines.

Other free software you may need
Games basically are a collection of images and sounds which
are moved and played accordingly to player actions and
scripting logic, so during the development of the game you
will also need to create and edit both images and sounds.
Audacity (https://www.audacityteam.org/) is a great free
software to work with sounds available for OS X, Windows
and Linux.
oceanaudio (http://www.ocenaudio.com/) is a cross-
platform, easy to use, fast and functional audio editor. It is
the ideal software for people who need to edit and analyze
audio files without complications.
GIMP (http://www.gimp.org/) is a powerful image editor
available for OS X, Windows and Linux..
Krita (https://krita.org/en/) is a great open source painting
software available for OS X, Windows and Linux. You may
find it really useful in the creation of textures, concept art,
illustrations and backgrounds.

Choosing a free web server
To test your Phaser games, and more in general to test most web
applications, you will need to install a web server on your
computer to override browser security limits when running your
project locally.
WAMP (http://www.wampserver.com/) is a complete Windows
web development environment which allows you to create web
applications with Apache2, PHP and a MySQL database.
MAMP (https://www.mamp.info/en/) runs on Mac and Windows,
works pretty much the same way WAMP does, and also features a
paid PRO version with more options.
Fenix Web Server (http://fenixwebserver.com/) is the web server I
currently use because it's really simple, with no extra stuff, and
open source. It's available for both Windows and Mac.

Note: The latest Mac Operating Systems do not allow a 32 bit
program to work, so we need to use Terminal -
(Terminal Commands : ls = "List Structures" , cd = "Change Dir")

--> use terminal, ls (list structures files), cd change dir, get to specific (dir)
with the index.html cd .. (to go back 1 dir)

$ python -m SimpleHTTPServer 8001

->> then open browser to localhost:8001

REALLY choosing a web server, …
I know at this time most of you may think “come on, it's just
JavaScript, what's this server stuff, I quit!”.
This is the same thing I said when I first had to install and
configure a web server just to run a JavaScript page.
Let me explain why you should really choose a web server, rather
than quit reading: browsers do not simply allow you to properly
display web pages and HTML5 games. They also take care of your
security.
When you load a page locally in your browser, you won't have
problems as long as it's just a static HTML web page.
But when you launch more complex scripts which load and handle
resources from your hard disk such as images, audio files and
every other kind of data, to prevent malicious scripts to access to
virtually any file on your computer, browsers have a series of
security measures which stop files to be accessed and –
unfortunately but necessarily – this causes your games not to
work.
The most frequent error you will get if you run a Phaser game
directly in your browser is something like “Cross origin requests
are only supported for protocol schemes: http, data, chrome,
chrome-extension, https.”
With a web server, browsers will know they are running in a small,
safe environment where only some files – the ones you placed in
a given project folder – can be accessed, and they will give your
scripts green light to work properly.
Believe me, it's necessary and way easier than you may think.

Author:

The structure of your first Phaser project
As said, every HTML5 game is a web page with some magic in it,
so we are going to create a new folder which will contain the
entire game.
The folder will contain the web page itself, the Phaser
framework we just downloaded, and every other game file we
will need as soon as the game gets more complex and needs
more resources like sprites, backgrounds, sound effects and so
on.
Done with the creation of the folder?
Create an index.html file which will be the web page you will
call to launch the game, and you'll have all you need to start
writing the first lines of code of your Phaser game.
If you followed all instructions, the folder containing your game
should look like this:

This is in the (subfolder)
..\Week_11\example_0

We will write the entire game code into game.js file.
Writing the whole game code into a single file may seem a
malpractice, because the code would be way more
understandable if organized in more files, such as a file for the
configuration, a file handling player input, and so on.

The drawback is most game sponsors want the entire game to fit
in just one file and probably won't accept the submission of your
game if your code is scattered through a dozen files.

Since finding a sponsor – which means finding someone willing to
pay for our hard work – is a top priority, that's why we are going
to write the entire code in one single file.
Back to our code, let's see what these lines mean:

The onload event for the window fires after all objects in the DOM
hierarchy (images, scripts, frames, and so on) have finished
loading and the document object has been built up.

Index.html
<!DOCTYPE html>
<html>
 <head>
 <title>(Your Name) Awesome Game</title>
 <meta name = "viewport" content = "width = device-width, initial-scale =
1.0, maximum-scale = 1.0, minimum-scale = 1.0, user-scalable = 0, minimal-
ui" />
 <style type = "text/css">
 body{
 padding: 0px;
 margin: 0px;
 }
 canvas{
 display:block;
 margin: 0;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 }
 </style>
 <script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="game.js"></script>
 </head>
 <body>
 </body>
</html>

01/24/2024

Vehical.firecannon(How_High, how_far_LeftRight)

Week 17

