
Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

Build a sample Game

(see the whole demo on www.lesscake.com
Phaser Demo
Learn to make HTML5 games with Phaser 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>My First Phaser Game</title>
<script src="https://cdn.jsdelivr.net/npm/phaser@
3.14.0/dist/phaser.min.js"></script>
<script src="game.js"></script>
</head>
<body>
<h1>My First Phaser Game</h1>
<div id="game"></div>
<p>Use the arrow keys to move around and collect the coins.</p>
</body>
</html>

This is pretty simple, but there are 2 important
things to notice:

We are loading 2 scripts: phaser.min.js (the Phaser
framework version 3.14.0) and game.js (our file).

•

We added a <div id="game"> element, that's
where the game will appear.

•

Now we will focus our attention on the game.js file.

Create a scene

Every Phaser project is made out of scenes. In our
case we are going to only have one that will contain
the whole game.

To create our scene we use a class with 3 methods.
It's very important to understand what each of
these methods is doing, since they are key to how
Phaser works.

// Create our only scene called mainScene, in the game.js file
class mainScene {
 // The 3 methods currenlty empty
preload() {
 // This method is called once at the beginning
 // It will load all the assets, like sprites and sounds
 }
 create() {
 // This method is called once, just after preload()
 // It will initialize our scene, like the positions of the sprites
 }
 update() {
 // This method is called 60 times per second after create()
 // It will handle all the game's logic, like movements
 }
}

To summarize, these 3 methods will be called in this
order: preload() → create() → update() → update()
→ update() → etc.

Start the game

Now that our scene is created, it's time to start the
game. For that we call Phaser.Game() at the end of
the Javascript file. There are a lot of optional
parameters available, but here are the main ones.

new Phaser.Game({
 width: 700, // Width of the game in pixels
 height: 400, // Height of the game in pixels
 backgroundColor: '#3498db', // The background color (blue)
 scene: mainScene, // The name of the scene we created
 physics: { default: 'arcade' }, // The physics engine to use
 parent: 'game', // Create the game inside the <div
id="game">
});

Our job in the rest of this tutorial will be to fill
the preload(), create(), and update() methods to
build our little project.

Test the game

It's a good time to test what we did so far.
However, directly opening the index.html file in a
web browser is not enough, we need to use a
local webserver for Phaser to work properly.

There are multiple ways to setup a local
webserver. If you already know how to do that,
then you can skip this part. Otherwise I will
show you a very simple technique to start one.

Download and install Brackets, it's a free code
editor that runs on Windows, Mac and Linux.
Then use it to open the directory "first-game"
that we created earlier, and click on the small
bolt icon on the top right corner of the app. That
will automatically create a local webserver, and
open a browser window with the game in it.

Add the player

The first element to add to the game is the
player (the white monster). That can be achieved
in 2 short steps.

Step 1, load the sprite. Since we are loading an
asset, we have to do it in the preload() method.

// Parameters: name of the sprite, path of the image
this.load.image('player', 'assets/player.png');
Step 2, show the sprite on the screen. This is
part of the initialization of the scene, so we do
that in the create() method.

// Parameters: x position, y position, name of the sprite
this.player = this.physics.add.sprite(100, 100, 'player');
There are 3 interesting things to mention here:

The player is stored in the this.player variable,
which is accessible in all methods of the class.

•

We typed this.physics to create the player. It
means that we are using the physics engine on
the sprite, and that will make handling collisions
super easy later on.

•

If we set the player's position to x = 0 and y =
0, then it would have been displayed in the top
left corner of the screen.

•

Add the coin

Next, we will add a yellow coin that the player
can catch. The process is going to be very similar
to what we did previously.

First we load the image of the coin in preload().

this.load.image('coin', 'assets/coin.png');
Then we show the coin on the screen in create():

this.coin = this.physics.add.sprite(300, 300, 'coin');

Add the score

The last element that is missing from our game is a
score. Since there are no assets to load, we put this code
directly in the create() method.

// Store the score in a variable, initialized at 0
this.score = 0;
// The style of the text
// A lot of options are available, these are the most important ones
let style = { font: '20px Arial', fill: '#fff' };

// Display the score in the top left corner
// Parameters: x position, y position, text, style
this.scoreText = this.add.text(20, 20, 'score: ' + this.score, style);

Now all the elements of the game are here, but the player
is stuck on the screen and we don't handle collisions.

Move the player

In order to move the player around, we have to
tell Phaser that we want the arrow keys as
inputs. For that, we type this line in
the create() method.

this.arrow = this.input.keyboard.createCursorKeys();
With this new variable we can check which arrow
key is pressed, and change the player's position
accordingly. To be able to move the player at
any time, we put the following code in
the update() method that is called 60 times per
second.

// Handle horizontal movements
if (this.arrow.right.isDown) {
 // If the right arrow is pressed, move to the right
 this.player.x += 3;
} else if (this.arrow.left.isDown) {
 // If the left arrow is pressed, move to the left
 this.player.x -= 3;
}
// Do the same for vertical movements
if (this.arrow.down.isDown) {
 this.player.y += 3;
} else if (this.arrow.up.isDown) {
 this.player.y -= 3;
}

Handle collisions

Every time the player touches the coin, we
would like to move the coin to a random
position and increment the score by 10. So
let's code all of that in a new method
called hit().

hit() {
 // Change the position x and y of the coin randomly
 this.coin.x = Phaser.Math.Between(100, 600);
 this.coin.y = Phaser.Math.Between(100, 300);
// Increment the score by 10
 this.score += 10;

// Display the updated score on the screen
 this.scoreText.setText('score: ' + this.score);
}

We need to call hit() when the player and the
coin overlap. But how do we know when that
happens? It's very simple with Phaser's built
in physics engine, we just put this code at
the beginning of update().

// If the player is overlapping with the coin
if (this.physics.overlap(this.player, this.coin)) {
 // Call the new hit() method
 this.hit();
}

Improve collisions

Right now when grabbing a coin, the only thing
that changes is the score. That's a little
underwhelming, especially since it's the main
goal of the game.

To improve this, let's make the player
temporary grow when he takes a coin. This can
be done with a tween in the hit() method.

// Create a new tween
this.tweens.add({
 targets: this.player, // on the player
 duration: 200, // for 200ms
 scaleX: 1.2, // that scale vertically by 20%
 scaleY: 1.2, // and scale horizontally by 20%
 yoyo: true, // at the end, go back to original scale
});

Week 17_coinGame_info

